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Self-replication is a capacity common to every species of living thing, and simple physical intuition
dictates that such a process must invariably be fueled by the production of entropy. Here, we un-
dertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount
of heat that is produced during a process of self-replication in a system coupled to a thermal bath.
We find that the minimum value for the physically allowed rate of heat production is determined by
the growth rate, internal entropy, and durability of the replicator, and we discuss the implications
of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating
nucleic acids. © 2013 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4818538]

INTRODUCTION

Every species of living thing can make a copy of it-
self by exchanging energy and matter with its surroundings.
One feature common to all such examples of spontaneous
“self-replication” is their statistical irreversibility: clearly, it
is much more likely that one bacterium should turn into two
than that two should somehow spontaneously revert back into
one. From the standpoint of physics, this observation contains
an intriguing hint of how the properties of self-replicators
must be constrained by thermodynamic laws, which dictate
that irreversibility is always accompanied by an increase of
entropy. Nevertheless, it has long been considered challeng-
ing to speak in universal terms about the statistical physics of
living systems because they invariably operate very far from
thermodynamic equilibrium, and therefore need not obey a
simple Boltzmann probability distribution over microscopic
arrangements. Faced with such unconstrained diversity of or-
ganization, it is quite reasonable to worry that the particular
mechanistic complexity of each given process of biological
self-replication might overwhelm our ability to say much in
terms of a general theory.

For the beginnings of a way forward, we should consider
a system of fixed particle number N and volume V in contact
with a heat bath of inverse temperature g. If we give labels to
the microstates of this system i, j, etc. and associate energies
E;, Ej, etc., respectively with each such microstate, then the
underlying time-reversal symmetry of Hamiltonian dynamics
tells us that the following detailed balance relation holds at
thermal equilibrium:!

e PE e PE
Z(B) Z(B)

Here, i* is the momentum-reversed partner of i, and Z(B)
is the canonical partition function of the system. The transi-
tion matrix element 7 (i — j; 7) is the conditional probability
that the system is found to be in microstate j at time t = t
> ( given that it started off in microstate i at an earlier time

7@ — j;1) = n(j* = i*; 7). (1)

0021-9606/2013/139(12)/121923/8

139, 121923-1

t = 0. Thus, the above relation states that when the system has
relaxed to thermal equilibrium and achieved a Boltzmann dis-
tribution over microstates (p(i) = %), the probability cur-
rents connecting i to j in the forward and time-reversed direc-
tions are equal.

Progress comes from recognizing that the heat expelled
into the bath over a transition from i to j is given by AQ,; _, ;
= E; — E;, and moreover that the quantity BAQ; _, ; is the
amount by which the entropy of the heat bath changes over
the course of this transition. Thus, we may write

T(j*— it i i

7%_)—]1)) =exp[— AS,.i |- )
Equation (2) sets up a microscopically detailed relationship
between the irreversibility of a transition (that is, how much
more likely it is to happen in the forward direction than in
the reverse direction) and the amount entropy is increased in
the surroundings over the course of the forward trajectory.
Moreover, it should be stressed that while this result is de-
rived from a statement of detailed balance (which only holds
at equilibrium) it is itself valid for any transition between two
microstates, and thus applies to the relaxation dynamics of
undriven systems arbitrarily far from equilibrium.

The principal aim of this work is to show that the mi-
croscopically detailed, quantitative relationship between ir-
reversibility and entropy production illustrated above has
significant, general thermodynamic consequences for far-
from-equilibrium, macroscopic processes such as biological
self-replication. Building on past results in nonequilibrium
statistical mechanics,>2 we will first derive a generalization
of the Second Law of Thermodynamics for macroscopic ir-
reversible processes. Subsequently, we will use this result
to demonstrate a lower bound on the heat output of a self-
replicator in terms of its size, growth rate, internal entropy,
and durability. We will furthermore show, through analy-
sis of empirical data, that this bound operates on a scale
relevant to the functioning of real microorganisms and other
self-replicators.

© Author(s) 2013
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MACROSCOPIC IRREVERSIBILITY

Our goal is to determine thermodynamic constraints on
a macroscopic transition between two arbitrarily complex
coarse-grained states. To do so, we have to think first about
how probability, heat, and entropy are related at the mi-
croscopic level. Equation (2) established such a relation-
ship in one special case, but the linkage turns out to be far
more general, for it has been shown? that for all heat bath-
coupled, time-symmetrically driven nonequilibrium systems
whose dynamics are dominated by diffusive motions that lack
any sense of ballistic inertia, any trajectory starting at x(0),
and going through microstates x(f) over time 7 obeys

_ 7 [x(1)]
BAQ(1)] = In [m} .

Here, B = 1/T sets the temperature T of the bath in natural
units, 77 [x(7)] is the probability of the trajectory x(¢) given x(0),
and AQ is the heat released into the bath over the course of
x(#). This formula captures the essential microscopic relation-
ship between heat and irreversibility: the more likely a for-
ward trajectory is than its time-reverse, the more the entropy
of the universe is increased through the exhaustion of heat into
the surrounding bath. Furthermore, it should be emphasized
that this result holds for systems subject to time-symmetric
external driving fields. This means that the steady-state prob-
ability distribution of the system need not be the Boltzmann
distribution, nor even a distribution whose steady-state prob-
ability flux satisfies detailed balance, in order for this funda-
mental relationship between irreversibility and entropy pro-
duction to hold.

By fixing the starting and ending points of our trajec-
tory (x(0) = i, x(r) = j), we can average the exponential
weight of the forward heat over all paths from i to j and ob-
tainw(j — i;7)/n(i = j;1) = (exp[—ﬂAQle]),-_)j. This
microscopic rule (of which Eq. (2) is clearly the special, un-
driven case) must have macroscopic consequences, and to in-
vestigate these we have to formalize what it means to talk
about our system of interest in macroscopic terms. In order to
do so, we first suppose there is some coarse-grained, observ-
able condition I in the system, such as the criterion “The sys-
tem contains precisely one healthy, exponential-growth-phase
bacterium at the start of a round of cell division.” If we pre-
pare the system under some set of controlled conditions and
then find that the criterion for I is satisfied, we can immedi-
ately associate with I a probability distribution p(i|I) which
is the implicit probability that the system is in some partic-
ular microstate 7, given that it was prepared under controlled
conditions and then observed to be in macrostate I.

Suppose now that we let some time interval T pass
while keeping our system in contact with a heat bath of
inverse temperature S (In subsequent expressions for (i
— j) the implicit ¢ will be omitted). At that point, we
could introduce a second criterion for coarse-grained obser-
vation of the system (e.g., “The system contains precisely two
healthy, exponential-growth-phase bacteria at the start of cell
division.”), which we might call I1, and in the event that we
observed this criterion to be satisfied, we could immediately
define the probability distribution p(j|II) as being the likeli-

3
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hood of the system being in microstate j given that a system
initially prepared in I subsequently propagated over a certain
period of time t and was then found to be in macrostate II.

Having constructed a probabilistic definition of our
macrostates of interest, we may now also define associated
quantities that will allow us to give a macroscopic definition
to irreversibility. In particular, we can write

7 — II) = / dj /dip(i|l)n(i - J), 4)
I I
and
7l — 1) = /di/ djip(jIIDz(j — i). ®))
I I

The first of these probabilities 7w (I — II) gives the likelihood
that a system prepared according to I is observed to satisfy
II after time t. The second probability 7 (I — I) gives the
likelihood that after another interval of t that the same sys-
tem would be observed again to satisfy I. Putting these two
quantities together and taking their ratio thus quantifies for us
the irreversibility of spontaneously propagating from I to II:

P 1) i fudi (B5) pGIDT G — i)
rd—1)  [fidi [;dj pGID7G — j)

20i

eiﬁ i—j
fidi [y dj pIDr(i — J)<[—(7w

P

Jidi [y dj pGDr@ — j)

—BAQijy. .
eln[ p’;;lll)] I-1I
where (. ..);_q1 denotes an average over all paths from some
i in the initial ensemble I to some j in the final ensemble
II, with each path weighted by its likelihood. Defining the
Shannon entropy S for each ensemble in the usual manner (S
= —) ;pilnp;), we can construct AS;,, = Sy — Sy, which
measures the internal entropy change for the forward reac-
tion. Since e* > 1 + x for all x, we may rearrange (6) to write

<e_ln[ﬁ}3{{]+ln[lz(j}lll;)](e—ﬂAQm,->i_)j> =1 7
I-11I

and immediately arrive at

7 — )

B(AQ)1-1 + In I:m

] + ASin = 0. ®)

If I and II corresponded to identical groups that each
contained all microstates i, we would have 7(Il — I) =7 (1
— II) = 1, and the above relation would reduce to a sim-
ple statement of the Second Law of Thermodynamics: on
average, the change in the entropy of the system AS;, plus
the change in the entropy of the bath B(AQ)y_ must be
greater than or equal to zero, that is, the average total entropy
change of the universe must be positive. What we have shown
here using Crooks’ microscopic relation, however, is that the
macroscopic irreversibility of a transition from an arbitrary
ensemble of states p(i|I) to a future ensemble p(j|II) sets a
stricter bound on the associated entropy production: the more
irreversible the macroscopic process (i.e., the more negative
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1 [”(H_’D]), the more positive must be the minimum total
w(I->1I)

entropy production. Moreover, since the formula was derived
under very general assumptions, it applies not only to self-
replication but to a wide range of transitions between coarse-
grained starting and ending states. In this light, the result in
Eq. (8) is closely related to past bounds set on entropy produc-
tion in information-theoretic terms,>™ as well as to the well-
known Landauer bound for the heat generated by the erasure
of a bit of information.®

GENERAL CONSTRAINTS ON SELF-REPLICATION

The generalization of the Second Law presented above
applies in a wide range of far-from-equilibrium, heat-bath-
coupled scenarios, from the operation of computers to the ac-
tion of molecular motors. The result turns out to be particu-
larly valuable, however, as a lens through which to take a fresh
look at the phenomenon of biological self-replication. Interest
in the modeling of evolution long ago gave rise to a rich liter-
ature exploring the consequences of self-replication for popu-
lation dynamics and Darwinian competition. In such studies,
the idea of Darwinian “fitness” is frequently invoked in com-
parisons among different self-replicators in a non-interacting
population: the replicators that interact with their environment
in order to make copies of themselves fastest are more “fit” by
definition because successive rounds of exponential growth
will ensure that they come to make up an arbitrarily large frac-
tion of the future population.’

The first thing to notice here is that exponential growth
of the kind just described is a highly irreversible process: in
a selective sweep where the fittest replicator comes to domi-
nate in a population, the future almost by definition looks very
different from the past. Happily, we are now in the position
to be quantitative about the thermodynamic consequences of
this irreversibility. Thus, let us suppose there is a simple self-
replicator living at inverse temperature 8 whose population
n > 1 obeys a master equation of the form

Pn(t) = gnlpn_1(t) = pa(O)] = n[pu(t) = pus1()],  (9)

where p,(¢) is the probability of having a population of n at
time ¢, and g > § > 0. For simplicity, we assume that a decay
event mediated by the rate parameter § amounts to a rever-
sion of the replicator back into the exact set of reactants in its
environment out of which it was made, and we also assume
that forming one new replicator out of such a set of reactants
changes the internal entropy of the system by an amount As;,,,
and on average puts out an amount of heat Ag into the sur-
roundings. We will furthermore ignore in this discussion the
additional layer of complexity that comes with considering
the effects of spontaneous mutation in evolving populations.’

For n(t = 0) > 1, we expect the behavior of the system
to follow a deterministic exponential growth path of the form
n(t) = n(0)e® ~ 9" Whatever the exact value of n, the proba-
bility in a short period of time dt that one particular replica-
tor gives birth 7 (I — II) should be g dt, while the probability
of a newly born copy decaying back whence it came in the
same-length interval time (7 (I — I)) should be § dt. Thus,

J. Chem. Phys. 139, 121923 (2013)

plugging into (8), we have
Asior = BAG + Asine > In[g/d]. (10)

As an aside, it should be noted here that we have avoided
including in the above a spurious multiplicative factor from
the number of particles in the system. As an example, one
might have thought in the case of converting one particle into
two that the probability rate of reverse back to one particle
ought to be 2§, with a resulting bound on entropy produc-
tion of the form In(g/§) — In2. To see why the In2 ought
not to be included, it is important to recognize that particles
in a classical physical system have locations that distinguish
them from each other. Thus, we either can think of the pro-
cess in question as bounding the entropy production of self-
replication plus mixing of particles (in which case the mixing
entropy term cancels the factor of 2) or else we can define our
coarse-grained states in the transition in question so that we
only consider the probability current for the reversion of the
replicator that was just born. Either way, the relevant bound
comes out to In (g/§).

The above result is certainly consistent with our expecta-
tion that in order for this self-replicator to be capable of net
growth, we have to require that g > §, which in turn sets a pos-
itive lower bound on the total entropy production associated
with self-replication. More can be seen, however, by rearrang-
ing the expression at fixed 8, As;,;, and Ag, to obtain

gmax — 8 = 8 (exp[BAg + Asin] = 1). (1)

In other words, the maximum net growth rate of a self-
replicator is fixed by three things: its internal entropy (As;y,),
its durability (1/5), and the heat that is dissipated into the sur-
rounding bath during the process of replication Agq.

Several comments are in order. First of all, let us consider
comparing two different replicators with fixed As;,; and § that
have different heat values Ag and Aq'. If Aqg > Aq/, then
clearly gmax > &, the replicator that dissipates more heat
has the potential to grow accordingly faster. Moreover, we
know by conservation of energy that this heat has to be gener-
ated in one of two different ways: either from energy initially
stored in reactants out of which the replicator gets built (such
as through the hydrolysis of sugar) or else from work done
on the system by some time-varying external driving field
(such as through the absorption of light during photosynthe-
sis). In other words, basic thermodynamic constraints derived
from exact considerations in statistical physics tell us that a
self-replicator’s maximum potential fitness is set by how ef-
fectively it exploits sources of energy in its environment to
catalyze its own reproduction. Thus, the empirical, biological
fact that reproductive fitness is intimately linked to efficient
metabolism now has a clear and simple basis in physics.

A somewhat subtler point to make here is that self-
replicators can increase their maximum potential growth rates
not only by more effectively fueling their growth via Ag, but
also by lowering the cost of their growth via § and As;,;. The
less durable or the less organized a self-replicator is, all things
being equal, the less metabolic energy it must harvest at min-
imum in order to achieve a certain growth rate. Thus, in a
competition among self-replicators to dominate the popula-
tion of the future, one strategy for “success” is to be simpler in
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construction and more prone to spontaneous degradation. Of
course, in the limit where two self-replicators differ dramati-
cally in their internal entropy or durability (as with a virus and
a rabbit) the basis for comparison in terms of Darwinian fit-
ness becomes too weak. Nevertheless, in a race between com-
petitors of similar form and construction, it is worthwhile to
note that one strategy for reducing the minimal “metabolic”
costs of growth for a replicator is to substitute in new compo-
nents that are likely to “wear out” sooner.

SELF-REPLICATING POLYNUCLEOTIDES

A simple demonstration of the role of durability in
replicative fitness comes from the case of polynucleotides,
which provide a rich domain of application for studying
the role of entropy production in the dynamics of self-
replication.® One recent study has used in vitro evolution to
optimize the growth rate of a self-replicating RNA molecule
whose formation is accompanied by a single backbone lig-
ation reaction and the leaving of a single pyrophosphate
group.” It is reasonable to assume that the reverse of this
reaction, in which the highly negatively charged pyrophos-
phate would have to attack the phosphate backbone of the nu-
cleic acid, would proceed more slowly than a simple hydrol-
ysis by water. The rate of such hydrolysis has been measured
by carrying out a linear fit to the early-time (20 day) expo-
nential kinetics of spontaneous degradation for the RNAase
A substrate UpA, and the half-life measured is on the or-
der of 4 years.!” Thus, with a doubling time of 1 h for the
self-replicator, we can estimate for this system that In[g /4]
> In[(4 years)/(1 h)]. Since the ligation reaction trades the
mixing entropy of substrate for that of pyrophosphate at com-
parable ambient concentrations, we can also assume in this
case that the change in internal entropy for the reaction is neg-
ligible. Thus, we can estimate the heat bound as

(AQ) > RT In[(4 years)/(1 h)] = 7 kcal mol™". (12)

Since experimental data indicate an enthalpy for the reac-
tion in the vicinity of 10 kcal mol~!,'"!2 it would seem this
molecule operates quite near the limit of thermodynamic effi-
ciency set by the way it is assembled.

To underline this point, we may consider what the bound
might be if this same reaction were somehow achieved us-
ing DNA, which in aqueous solution is much more ki-
netically stable against hydrolysis than RNA."> In this
case, we would have (AQ) > RT In[(3 x 107 years)/(1 h)]
= 16 kcal mol~!, which exceeds the estimated enthalpy for
the ligation reaction and is therefore prohibited thermody-
namically. This calculation illustrates a significant difference
between DNA and RNA, regarding each molecule’s ability
to participate in self-catalyzed replication reactions fueled by
simple triphosphate building blocks: the far greater durabil-
ity of DNA demands that a much higher per-base thermody-
namic cost be paid in entropy production'* in order for for
the growth rate to match that of RNA in an all-things-equal
comparison.

The key point here is that if a self-replicating nucleic acid
catalyzes its own growth with a rate constant g and is de-
graded with rate constant §, then the molecule should be capa-

J. Chem. Phys. 139, 121923 (2013)

ble of exhibiting exponential growth through self-replication
with a doubling time proportional to 1/(g — §). However,
thermodynamics only sets a bound on the ratio g/§, which
means that g — § can be made arbitrarily large while the
“metabolic cost” of replication remains fixed. Thus, surpris-
ingly, the greater fragility of RNA could be seen as a fitness
advantage in the right circumstances, and this applies even
if the system in question is externally driven, and even still
if the replicators maintain non-Boltzmann distributions over
their internal degrees of freedom. Moreover, we would ex-
pect that the heat bound difference between DNA and RNA
should increase roughly linearly in the number of bases ¢ lig-
ated during the reaction, which forces the maximum possible
growth rate for a DNA replicator to shrink exponentially with
£ in comparison to that of its RNA competitor in an all things
equal comparison. This observation is certainly intriguing in
light of past arguments made on other grounds that RNA, and
not DNA, must have acted as the material for the pre-biotic
emergence of self-replicating nucleic acids.!> '3

The particular example of a single nucleic acid base lig-
ation considered here is instructive because it is a case where
the relationship between irreversibility and entropy produc-
tion further simplifies into a recognizable form. It is reason-
able to define our coarse-graining of states so that the starting
and ending products of this reaction are each in a local, ther-
mal equilibrium, such that all of their degrees of freedom are
Boltzmann-distributed given the constraints of their chemical
bonds. In such a circumstance, detailed balance alone requires
that the ratio of the forward and reverse rates be locked to
the Gibbs’ free energy change for the reaction via the famil-
iar formula In[kdk,] = —BAG = —BAH + ASiyy = BAQ
+ AS;,,..% In this light, the relationship between durability and
growth rate has an elegant description in terms of transition
state theory: an activation barrier that is lower in the forward
direction will be lower in the reverse direction as well. The
key point here, however, is that whereas the relationship be-
tween free energy and reaction rates obtains only under lo-
cal equilibrium assumptions, the inequality we have derived
here bounding entropy production in terms of irreversibility
applies even in cases where many degrees of freedom in the
system start and end the replication process out of thermal
equilibrium.

On a related note, it may also be pointed out that a naive
objection might be raised to the above account of nucleic acid
growth on the grounds that its conclusions about the maxi-
mum possible growth rate of DNA would seem to disagree
with the empirical fact that DNA is obviously capable of un-
dergoing replication much more rapidly than one phosphodi-
ester linkage per hour; the processive holoenzyme DNA poly-
merase III is well-known for its blazing catalytic speed of
~1000 base-pairs per second.'® The resolution of this puz-
zle lies in realizing that in the protein-assisted DNA replica-
tion scenario being raised here, the polymerase assembly is
first loaded onto DNA in an ATP-dependent manner that irre-
versibly attaches the enzyme to the strand using a doughnut-
shaped clamp composed of various protein subunits. Thus,
while the polymerase can catalyze the elongation of the DNA
chain extremely rapidly, one also must take into account that
the reverse reaction of DNA hydrolysis should happen much
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more readily with an enzyme tethered to the strand than it
does for isolated DNA in solution. This example therefore
underlines the care that must be shown in how the coarse-
grained states I and II are defined in the computation of
irreversibility.

BACTERIAL CELL DIVISION

Ligation of polynucleotides provides a relatively simple
test case where tracking the formation of a new replicator
can be reduced to monitoring the progress of a single molec-
ular event (i.e., the formation of a phosphodiester linkage);
however, the macroscopic relationship between irreversibility
and entropy production applies equally in cases that are much
more complex. Indeed, we shall now argue that these basic
thermodynamic constraints are even relevant to the growth
and division of whole single-celled organisms.

We begin by considering the preparation of a large sys-
tem initially containing a single E. coli bacterium, immersed
in a sample of rich nutrient media in contact with a heat
bath held at the bacterial cell’s optimal growth temperature
(1/B=T ~ 4.3 x 1072 J).'"18 We can assume furthermore
that the cell is in exponential growth phase at the beginning of
its division cycle, and that, while the volume and mass of the
entire system are held fixed so that no particles are exchanged
with any external bath and the walls of the container do not
move, the composition and pressure of the nutrient media sur-
rounding the bacterium mimics that of a well-aerated sample
open to the earth’s atmosphere. If we summarize the exper-
imental conditions described above with the label I, we can
immediately say that there is some probability p(i|I) that the
system is found in some particular microstate i (with energy
E;) given that it was prepared in the macroscopic condition I
by some standard procedure. Although this probability might
well be impossible to derive ab initio, in principle it could be
measured (at least in a thought-experiment) through lengthy
experimental consultation with a microbiologist.

Three preliminary points are in order as a result of the
fact that the “system” being defined here is not only the bac-
terium, but also the surrounding broth containing the food it
will eat and the oxygen it will breath, etc. First of all, looking
ahead to our expression for entropy production, we must con-
sider the entropy changes associated with the bacterium’s in-
gestions and excretions during growth and division to be part
of the internal entropy change of the system AS;,,;. The some-
what unexpected result is that if, for example, the bacterium
subsisted on metabolic reactions that were accompanied by
large increases in entropy (through, for example, anaerobic
gas evolution'?), the total internal entropy change for forming
a new bacterium could actually be positive.

Second, it must be pointed out that the connec-
tion between the internal Shannon entropy S;,, = —m
= — > pln p and the familiar idea we have of entropy from
equilibrium statistical mechanics is not obvious, and requires
elaboration. In Boltzmann-distributed systems, it has long
been clear that the internal Shannon entropy has a natural con-
nection to the heat exchanged with the surroundings because
of the set relationship between internal energy and proba-
bility. Only more recently has it been demonstrated that S;,,

J. Chem. Phys. 139, 121923 (2013)

continues to obey a general thermodynamic relation for arbi-
trary nonequilibrium transitions: AS;,; < AQ../T. Here, AQ,,
is the so-called excess heat, which measures the extra heat
evolution on top of what would accompany the various dissi-
pative steady-states traversed during the transition.?? Perhaps
more importantly, we expect that even far from equilibrium,
the Shannon entropy remains the measure of “statistical dis-
order” in the system that it is for equilibrium systems. The
easiest way to see this is consider a case of uniform start-
ing and ending distributions, that is, where p(i|I) = py and
p(j|II) = py for all states i and j that have non-zero proba-
bility in their respective ensembles. Clearly, in this case AS;,;
= In[py/py] = In[Qy/24], that is, it simply measures how
many more or fewer states there are in II than in I. Moreover,
it is more generally the case that the Shannon entropy is ef-
fecting a log-scale comparison of volumes in phase space be-
fore and after the transition. Accordingly, the factors affecting
this quantity far from equilibrium should be the same as they
are near equilibrium, namely the number of different possible
positions and velocities available to particles in the system
when they are arranged to belong to the ensemble in question.
Thus changes in partial volumes of gases are, for example,
still relevant to the question of how this internal entropy has
changed.

Finally, it should be noted that for the case of a microbe
such as E. coli (which is not carrying out any sort of externally
driven photosynthetic process) the propagator for the system
(i — j; T) over any interval of time 7 can be taken to obey
(2). Put another way, while the bacterium by itself might ap-
pear to be driven by external currents of chemical reactants
and products, the system as a whole (which includes the nu-
trient media) is not driven at all, and simply exchanges heat
with a surrounding thermal reservoir. Thus, quite counterin-
tuitively, we expect that the eventual steady-state for this sys-
tem (as for any system of fixed volume and particle number
left in contact with a heat bath for an infinite amount of time)
will be a Boltzmann distribution over microstates in which
detailed balance holds. What makes the scenario of interest
here a far-from-equilibrium process, then, is only that its ini-
tial conditions p(i|I) correspond to a highly non-Boltzmann
distribution over microstates. The bacterial growth that takes
place at the very beginning of the long process of relaxation to
equilibrium is in this sense a mere transient, the fuel for which
comes from chemical energy stored in the system’s starting
microscopic arrangement. By the time detailed balance sets
in, we expect all bacteria initially in the system will have long
since overgrown their container, starved, perished, and disin-
tegrated into their constituent parts.

Now consider what would happen in our system if we
started off in some microstate i in I and then allowed things
to propagate for a time interval of 7, the typical duration of
a single round of growth and cell division. From the biologi-
cal standpoint, the expected final state for the system is clear:
two bacteria floating in the media instead of one, and various
surrounding atoms rearranged into new molecular combina-
tions (e.g., some oxygen converted into carbon dioxide). We
can label the ensemble of future states corresponding to such
a macroscopic outcome II. Given, that the system was ini-
tially prepared in I and did subsequently end up in II, any
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microstate j will have some finite likelihood which we can
call p(j|ID).

For the process of bacterial cell division introduced
above, our ensemble II is a bath of nutrient-rich media con-
taining two bacterial cells in exponential growth phase at the
start of their division cycles. In order to make use of the re-
lation in (8), we need to estimate 7 (I — I), the likelihood
that after time t4;,, we will have ended up in an arrange-
ment I where only one, newly formed bacterium is present
in the system and another cell has somehow been converted
back into the food from which it was built. Of course, cells
are never observed to run their myriad biochemical reactions
backwards, any more so than ice cubes are seen forming spon-
taneously in pots of boiling water. Nevertheless, it is implicit
in the assumptions of very well-established statistical me-
chanical theories that such events have non-zero (albeit ab-
surdly small) probabilities of happening,! and these likeli-
hoods can be bounded from above using the probability rates
of events we can measure experimentally. This is possible be-
cause the rough physical features of the system are sufficient
for making plausible estimates of thermodynamic quantities
of interest; since we are ultimately interested in bounding the
heat generated by this process, we are only concerned with the
impact of the probabilities we estimate on a logarithmic scale;
we would have to change our probability estimate by many or-
ders of magnitude to see any effect on the corresponding heat
bound.

The first piece is relatively easy to imagine: while we may
not be able to compute the exact probability of a bacterium
fluctuating to peptide-sized pieces and de-respirating a certain
amount of carbon dioxide and water, we can be confident it is
less likely than all the peptide bonds in the bacterium spon-
taneously hydrolyzing. Happily, this latter probability may be
estimated in terms of the number of such bonds 7,,,, the divi-
sion time 74;,, and the peptide bond half-life 7 y,.

An added complication comes from the fact that the bac-
terium normally grows at a rate of r = n,.,/74, peptide
bonds formed per unit time.'® In order to make a model for
the probability of a bacterium disintegrating over a set period
of time, we need to specify when during that period it starts
to disintegrate, and here two different factors collide. The less
time we wait for the disintegration to begin, the less proba-
ble it is that it will happen in that period of time. However,
the longer we wait, the more new peptide bonds will get syn-
thesized in the normal course of growth, so that the probabil-
ity of subsequently undergoing spontaneous disintegration of
the whole cell in the remainder of the time 7 ;, shrinks expo-
nentially. Between these two countervailing effects there must
be an optimal time that maximizes the probability of disinte-
gration; thus, assuming each peptide bond spontaneously hy-
drolyzes independently from the others with probability rate
~ r,:vii, we may therefore model the total cell hydrolysis prob-
ability pj,q in time  as

In ppya = (Npep +7t) Inft/Thyal. (13)
This quantity is maximized for f,x satisfying tgiy/fmax

+ In[tmax/Thyal + 1 = 0, which we can compute numerically
for chosen values of the two input timescales. Following this,

J. Chem. Phys. 139, 121923 (2013)

we simply have to evaluate

[0 pryal 2 11 pep In[tmax/Thyall = 1 pep(Taiv/ tmax + 1)
14

We have now dealt with the demise of one of the cells.
Handling the one that stays alive is more challenging, as we
have assumed this cell is growing processively, and we ought
not make the mistake of thinking that such a reaction can be
halted or paused by a small perturbation. The onset of ex-
ponential growth phase is preceded in E. coli by a lag phase
that can last several hours,'” during which gene expression is
substantially altered so as to retool the cell for rapid division
fueled by the available metabolic substrates.?! It is therefore
appropriate to think of the cell in question as an optimized
mixture of components primed to participate in irreversible
reactions like nutrient metabolism and protein synthesis.

We can therefore argue that the likelihood of a sponta-
neous, sustained pause (of duration 74;,) in the progression of
these reactions is very small indeed: if each enzymatic protein
component of the cell were to reject each attempt of a sub-
strate to diffuse to its active site (assuming a diffusion time
of small molecules between proteins of ;s ~ 1078 §2223),
we would expect |In ppausel O 11 pep(Taiv/Taifs)| to exceed
[In ppyq| by orders magnitude. We must, however, consider an
alternative mechanism for the most likely II — I transition:
it is possible that a cell could grow and divide in an amount
of time slightly less than 74,.'® If, subsequent to such an
event, the daughter cell of the recent division were to spon-
taneously disintegrate back into its constituent nutrients (with
log-probability at most on the order of Inpy,), we would
complete the interval of 7, with one, recently divided, pro-
cessively growing bacterium in our system, that is, we would
have returned to the I ensemble. Thus, via a back-door into I
provided to us by bacterial biology, we can claim that

Inm(Il — I) < 2In ppyg = —2npep(Taiv/tmax + 1. (15)

Having obtained the above result, we can now refer
back to the bound we set for the heat produced by this self-
replication process and write

:3(Q> = 2npep(‘[div/tmax + 1) - ASim- (16)

This relation demonstrates that the heat evolved in the course
of the cell making a copy of itself is set not only by the de-
crease in entropy required to arrange molecular components
of the surrounding medium into a new organism, but also by
how rapidly this takes place (through the division time 7 ;)
and by how long we have to wait for the newly assembled
structure to start falling apart (through 7). Moreover, we
can now quantify the extent of each factor’s contribution to
the final outcome, in terms of 7,,,, which we estimate to be
1.6 x 10°, assuming the dry mass of the bacterium is 0.3
picograms.?*

The total amount of heat produced in a single division cy-
cle for an E. coli bacterium growing at its maximum rate on
lysogeny broth (a mixture of peptides and glucose) is B(Q)
= 220n,,e,,.17 We expect the largest contributions to the in-
ternal entropy change for cell division to come from the
equimolar conversion of oxygen to carbon dioxide (since car-
bon dioxide has a significantly lower partial pressure in the
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atmosphere), and from the confinement of amino acids float-
ing freely in the broth to specific locations inside bacterial
proteins. We can estimate the contribution of the first factor
(which increases entropy) by noting that In(vce,/vo,) ~ 6.
The liberation of carbon from various metabolites also in-
creases entropy by shuffling around vibrational and rotational
degrees of freedom, but we only expect this to make some
order unity modification to the entropy per carbon atom me-
tabolized. At the same time, peptide anabolism reduces en-
tropy: by assuming that in 1% tryptone broth, an amino acid
starts with a volume to explore of v; = 100 nm?® and ends up
tightly folded up in some vy = 0.001 nm® sub-volume of a
protein, we obtain In (vy/v;) ~ —12. In light of the fact that
the bacterium consumes during division a number of oxygen
molecules roughly equal to the number of amino acids in the
new cell it creates,'”?> we can arbitrarily set a generous upper
bound of —AS;,; < 10n,,,.

In order to compare this contribution to the irreversibility
term in (8), we assume a cell division time of 20 min,'”!® and
a spontaneous hydrolysis lifetime for peptide bonds of 74
~ 600 years at physiological pH,?® which yields a fpax
~ 1 min and 27y (Taiv/tmax + 1) = 6.7 x 10! >~ 42n,,,, a
quantity at least several times larger than AS;,;. We often think
of the main entropic hurdle that must be overcome by bio-
logical self-organization as being the cost of assembling the
components of the living thing in the appropriate way. Here,
however, we have evidence that this cost for aerobic bacterial
respiration is relatively small,’ and is substantially out-
stripped by the sheer irreversibility of the self-replication re-
action as it churns out copies that do not easily disintegrate
into their constituent parts.

More significantly, these calculations also establish that
the E. coli bacterium produces an amount of heat less than six
times (220n,.,/42n,,,) as large as the absolute physical lower
bound dictated by its growth rate, internal entropy production,
and durability. In light of the fact that the bacterium is a com-
plex sensor of its environment that can very effectively adapt
itself to growth in a broad range of different environments, we
should not be surprised that it is not perfectly optimized for
any given one of them. Rather, it is remarkable that in a single
environment, the organism can convert chemical energy into
a new copy of itself so efficiently that if it were to produce
even a quarter as much heat it would be pushing the limits
of what is thermodynamically possible! This is especially the
case since we deliberately underestimated the reverse reac-
tion rate with our calculation of pj,,, which does not account
for the unlikelihood of spontaneously converting carbon diox-
ide back into oxygen. Thus, a more accurate estimate of the
lower bound on B(Q) in future may reveal E. coli to be an
even more exceptionally well-adapted self-replicator than it
currently seems.

At the same time, it is worthwhile to remember that any
self-replicator faces other constraints in addition to the ther-
modynamic ones explored in the preceding analysis. Any en-
tity that makes copies of itself is built out of some particular
set of materials with a contingent set of properties and modes
of interaction or intercombination. Viewed purely from the
standpoint of the generalization of the Second Law of Ther-
modynamics derived in this work, it is possible that E. coli
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might grow dramatically faster than it does currently while
exhausting the same amount of heat. Once one accounts for
the contingencies of exactly how bacteria replicate (and, for
example, how they use ribosomes to accurately synthesize the
protein machinery that allow them to function at the molec-
ular level®”), it is reasonable to expect that the organism in
fact faces far more restrictive impediments to growth that arise
from the speeds of rate-limiting reactions on which the whole
process depends.

CLOSING REMARKS

The process of cellular division, even in a creature as
ancient and streamlined as a bacterium, is so bewilderingly
complex that it may come as some surprise that physics can
make any binding pronouncements about how fast it all can
happen. The reason this becomes possible is that nonequi-
librium processes in constant temperature baths obey general
laws that relate forward and reverse transition probabilities
to heat production.’> Previously, such laws had been applied
successfully in understanding thermodynamics of copying
“informational” molecules such as nucleic acids.® In those
cases, however, the information content of the system’s
molecular structure could more easily be taken for granted,
in light of the clear role played by DNA in the production of
RNA and protein.

What we have glimpsed here is that the underlying con-
nection between entropy production and transition probability
has a much more general applicability, so long as we recog-
nize that “self-replication” is only visible once an observer
decides how to classify the “self” in the system: only once a
coarse-graining scheme determines how many copies of some
object are present for each microstate can we talk in prob-
abilistic terms about the general tendency for that type of
object to affect its own reproduction, and the same system’s
microstates can be coarse-grained using any number of dif-
ferent schemes. Whatever the scheme, however, the resulting
stochastic population dynamics must obey the same general
relationship entwining heat, organization, and durability. We
may hope that this insight spurs future work that will clarify
the general physical constraints obeyed by natural selection in
nonequilibrium systems.
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