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SUMMARY

Allosteric conformational change underlies biolog-
ical function in many proteins. Allostery refers to
a conformational event in which one region of
a protein undergoes structural rearrangement in
response to a stimulus applied to a different region
of the same protein. Here, I show for a variety of
proteins that a simple, phenomenological model of
the dependence of protein conformation on hydro-
phobic burial energy allows one to compute low-
energy conformational fluctuations for a given
sequence by using linear programming to find opti-
mized combinations of sequence-specific hydro-
phobic burial modes that satisfy steric constraints.
From these fluctuations one may calculate allosteric
couplings between different sites in a protein
domain. Although the physical basis of protein struc-
ture is complex and multifactorial, a simplified
description of conformational energy in terms of the
hydrophobic effect alone is sufficient to give a mech-
anistic explanation for many biologically important
allosteric events.

INTRODUCTION

Structural biology rests on the principle that each macromole-

cule reliably adopts a well-defined shape and that it is this

shape that provides the basis for its function. What compli-

cates this basic picture is that it is often the capacity to

undergo conformational change in reaction to targeted stimuli

that enables a given protein to fulfill its role in the biological

context. Allosteric motion—i.e., the structural rearrangement

of one part of a protein in response to a stimulus applied at

some remote site on the same protein—plays a crucial role in

many biochemical pathways, particularly those involved in

regulation and signaling (Branden and Tooze, 1999). Proteins

may redistribute themselves from one part of conformation

space to another in ways that affect their functional interactions

with other biomolecules, whether through a ligand-binding

event, the hydrolysis of a substrate, or some covalent modifica-

tion such as phosphorylation (Swain and Gierasch, 2006; Volk-

man et al., 2001).

In broad terms, the physical basis of allostery is clear: if a rela-

tively small perturbation can bring about a large-scale confor-
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mational shift in a protein, it follows that there are at least two,

structurally distinct ensembles of conformations with nearly

the same free energy, such that a small amount of additional

energy supplied by the right stimulus can shift the equilibrium

from one basin to the other (Formaneck et al., 2006; Gunase-

karan et al., 2004; Kern and Zuiderweg, 2003; Kumar et al.,

2000; Swain and Gierasch, 2006). Making more precise claims

about why a particular protein should exhibit the particular

conformational multistability that it does proves to be much

more difficult. Although normal mode analysis has helped eluci-

date the origins of certain functionally important coordinated

motions in macromolecules (Levitt et al., 1985), such an

approach is by definition limited to the domain of small devia-

tions from a single local-energy minimum. Heroic efforts to

extend normal modes beyond the linear regime have made it

possible to describe the dynamics of barrier-crossing events

that underlie some allosteric events (Miyashita et al., 2003),

but not without relying on foreknowledge of initial and final

states for the conformational transition in question (Daily and

Gray, 2009; Hawkins and McLeish, 2004). More recently,

some researchers have begun to circumvent this obstacle by

using detailed, high-resolution, full-atom structure prediction

or molecular dynamics-simulation algorithms to generate accu-

rate predictions of alternative conformations for allosteric

systems (Kidd et al., 2009), as well as physical estimates of

correlations in motions of different parts of a fluctuating protein

(Liu and Nussinov, 2008). Others, meanwhile, have had great

success in approaching allostery from an evolutionary stand-

point, uncovering potentially important groups of interacting

residues by identifying rare sequence covariations in families

of related proteins (Süel et al., 2003). Nevertheless, there

remains a need for an analytically solvable, physical theory of

allosteric motion that provides a general framework for explain-

ing allostery mechanistically in terms of detailed features of

protein sequence.

In this work such a model for globular protein domains is

proposed, solved, and applied. Focusing on large-scale back-

bone arrangements at the expense of finer, angstrom-level

details, I construct a phenomenological expression for hydro-

phobic burial energy whose global minimum may be computed

exactly on constraints that account for the impact of intrachain

steric repulsion. This approach enables rapid calculation of the

energetically minimal backbone burial trace for many globular

domains from genetic information alone. More significantly, it

paves the way for a new understanding of allosteric motion as

the outcome of a sterically constrained competition among

different, sequence-specific collective modes of hydrophobic

burial.
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RESULTS

Model
The aim of this section is to develop a solvable physical model of

how conformational fluctuations in the near-native ensemble of

a globular protein depend on sequence, in order to provide

a mechanistic explanation for the structural rearrangements that

take place during allosteric motion. The guiding principle for the

approach taken here is that large-scalemotions in a protein chain

are rough features of tertiary structure as a whole and, therefore,

need not necessarily be described in terms of an atomistically

exact account of conformational energetics. Rather, we may

construct our phenomenological model so as to keep it simple

and analytically tractable, while still capturing the essence of the

physical effects at play in the phenomenon of interest.

The first step in determining which conformation or conforma-

tions a protein will prefer as a result of its sequence is to make

some assumption about how a protein’s energy varies with

its shape. A panoply of forces (e.g., backbone-to-backbone

hydrogen-bonding interactions, electrostatic attraction and

repulsion between charged side chains, or sequence-specific

propensities for particular backbone dihedral angles) do, in

fact, affect the energy of a given conformation. However, in the

interest of simplicity, it is worth noting that burial of hydrophobic

amino acid side chains in a solvent-occluded core is a feature

of tertiary structure common to nearly all globular proteins

(Branden and Tooze, 1999; Camacho and Thirumalai, 1993).

Indeed, various studies suggest that the hydrophobic effect

(Chandler, 2005; Rose et al., 1985), and the drive it produces in

a protein to bury hydrophobic amino acid side chains, may be

the fundamental force that determines the native structure and

stability of many polypeptides (Ghosh and Dill, 2009; Silverman,

2005). The most basic question to ask, then, is (Pereira De

Araújo, 1999): Given a polypeptide chain of amino acids whose

sequence gives rise to a certain pattern of hydrophobicity along

its length, what is the energetically optimal way of burying the

hydrophobic parts of the chain in a collapsed globule while

obeying the constraints of polymeric bonds and steric repulsion?

Themost fundamental effect of a polymeric bond is to produce

correlations in the spatial locations of pairs of monomers that

are separated on the chain by relatively few bonds. The simplest

and most mathematically tractable way of introducing these

correlations into a model of a polymer with monomers indexed

by s whose conformation is specified by the trajectory

rðsÞ= ½xðsÞ; yðsÞ; zðsÞ� is to have a term in the Hamiltonian that

connects one monomer to the other with harmonic springs of

stiffness k. The partition function for this effective Hamiltonian

by itself is simply the propagator for an unbiased random walk

through space (Shakhnovich and Gutin, 1989). The parameter

k(T) is a function of temperature and specifies a length scale for

the typical separation in space between two adjacent monomers

along the chain. For all calculations performed in this work, it is

assumed that k= 3kBT=2, which corresponds to a random walk

for which the mean-square distance between two adjacent

monomers hjrðs+ 1Þ � rðsÞj2i is equal to unity. This choice effec-

tively sets the units of length in the theory to be the typical

distance between a carbons on a polypeptide chain.

To incorporate the hydrophobic effect into the model, it is

necessary to make some choice about how the forces acting
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on the protein arise from its amino acid sequence. Positing

a quadratic form as a rough approximation to the behavior of

the hydrophobic force has the double appeal of its analytical

tractability and its consistency with the physical intuition that

the force on any given residue should be stronger in magnitude

near the surface of the globule (where solvent is present) than

it is near the core of the globule (where solvent is absent). In

this case, one writes the full Hamiltonian as:

H=

Z
ds

"
k

���drðsÞ
ds

���2 +4ðsÞjrðsÞj2
#
:

Here, the scale of the relative hydropathy 4(s) is fixed in terms

of k in units of kBT by the expected free-energy change associ-

ated with moving a single amino acid from the hydrophobic

core of the protein (often likened to an ethanol or octanol solu-

tion; Kyte and Doolittle [1982]) to the aqueous environment of

the globule surface. The sequence-dependent Hamiltonian

term above resembles that of a polymer in an external field

(Grosberg, 1984), insofar as each amino acid is independently

attracted toward or repelled from the center of the globule

depending on whether it is hydrophobic or hydrophilic.

However, in order for the Hamiltonian in the present discussion

to make physical sense, the radial-squared distance jrðsÞj2
must be taken from the globule’s center of mass. It is distance

from the center of the polymer, wherever it may be, and not

distance from an arbitrary origin, that affects solvent-exposed

surface area.

An exact treatment of steric repulsion is challenging, so much

so that one is forced to resort to approximate methods even in

the study of ‘‘simple’’ systems such as a fluid of hard spheres.

This difficulty can be traced to the pairwise nature of the steric

interaction: any atom in a protein chain should be able to

occupy any location in space, in principle, unless that location

is already occupied by another atom. It is arguable, though,

that not all self-clashed conformations of a polymer that are dis-

allowed by steric repulsion are equally forbidden. If a given

conformation only is forbidden because a single pair of atoms

overlap in space, then that conformation bears a great deal of

structural similarity to a conformation that is permitted in the

presence of steric repulsion. In contrast, conformations that

pack hundreds of residues into a volume normally occupied

by a single atom presumably must undergo dramatic structural

rearrangement in order to come into line with steric constraints.

This observation motivates the argument that the most essen-

tial structural constraint on a protein’s conformation imposed

by steric repulsion is to spread the polymer out over space

enough that the latter category of ‘‘pathologically clashed’’

conformations that could never even resemble a protein are

forbidden.

The simplest way to forbid pathological clashing is to analo-

gize the polymeric globule to a sphere of maximum radius R. If

the globule is assumed to have uniform mass density, so that

the number of residues within any small subvolume of fixed

size in the sphere is roughly the same, then it must be the case

that jrj2 = 3R2=5.

Thus, pathological clashing can be prevented by constraining

the mean-square radius of the polymer’s conformation to have

a fixed ratio to its maximum squared radius of 3/5.
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To proceed toward a solution to the problem as posed above,

it is necessary to diagonalize the Hamiltonian. An orthonormal

set of eigenfunctions (‘‘burial modes’’) jk(s) may be defined for

free-end boundary conditions and the center of mass constraint

such that

�k
d2jkðsÞ
ds2

+4ðsÞjkðsÞ= 3kjkðsÞ:

Any conformation of the polymer may be expressed in this

basis as

rðsÞ= ½xðsÞ; yðsÞ; zðsÞ�=
"X

k

XkjkðsÞ;
X
k

YkjkðsÞ;
X
k

ZkjkðsÞ
#
;

in which case, defining ck =X2
k +Y2

k +Z2
k , one may write the

Hamiltonian as

H=
X
k

ck3k

and the steric constraint as

X
k

ck =
3NR2

5

with

R2RjrðsÞj2z
XN
k = 1

ckjkðsÞ2;

which completes the picture (see Supplemental Experimental

Procedures for derivation). Each ‘‘conformation’’ corresponds

to a choice of the constants ck, which allow one to compute

a representative backbone trace jrðsÞj2 that measures the rela-

tive burial of each part of the polymer with respect to the core

of the globule. The energy, which is a linear function of the

constants ck, may be optimized on the steric constraints, which

are simply linear inequalities. As a result, the search for a lowest-

energy conformation reduces to an exactly solvable linear

programming problem.
Data Analysis
The model considered here asserts that to each amino acid

sequence, there corresponds a series of independent modes

of hydrophobic burial that define a hierarchy of energetic favor-

ability for global contortions of the protein. In the absence of

steric repulsion, the optimal conformation would simply be

the burial mode of lowest energy, but this would require that

most of the polymer be crammed into a small subvolume of

the globule at nonphysically high density. Introduction of the

steric constraint forces the polymer to find an energetically

optimal combination of the low-energy burial modes: one that

unpacks the core of the globule most efficiently and thereby

achieves a physically reasonable density without exposing too

many hydrophobic residues to the surrounding solvent.

Figure 1 demonstrates the application of this procedure to the

sequence of sperm whale myoglobin. Myoglobin is an attractive

test case for the model because it is a single, a-globular domain

that does not reside in membrane (transmembrane proteins,

which experience a nonuniform solvent environment, sit at the
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other end of the spectrum [Branden and Tooze, 1999]: their

tertiary structure clearly will be dominated by effects that the

model ignores). The standard Kyte-Doolittle hydropathy scale

(Kyte and Doolittle, 1982) provides a means to convert the amino

acid sequence of the protein into a string of numbers from which

the independent hydrophobic burial modes may be computed

(Figure 1B). Linear programming allows energetically optimal

construction of the protein’s backbone burial trace (Pereira de

Araújo et al., 2008) jrðsÞj2 from the sequence’s low-energy

modes, and the result is compared in Figure 1C to the same

burial trace calculated from the positions of atoms in the crystal

structure of myoglobin. The resemblance between the two

traces is unmistakable (correlation = 0.58), and substantially

more pronounced than the equivalent result obtained through

a simple local averaging of sequence hydrophobicity within

windows along the chain, where window width is selected so

as to best fit the crystal structure (correlation = �0.41, width =

6 residues) (see Figure S1 available online). The same burial

mode analysis carried out for a variety of other proteins yields

comparable agreement, with the locations (as opposed to the

exact heights) of peaks and troughs in the burial trace tending

to match best with the crystal structure (see Figures S1B and

S1C).

A large-scale study of protein structure space provides further

evidence that the model-predicted energetically optimal trace

computed from sequence alone does a good job of roughly

capturing the burial patterns of many proteins. As a basis

for comparison, a control method of burial calculation was

also implemented, in which each sequence hydrophobicity

pattern was averaged within windows of fixed size, and where

window size was chosen to optimize the correlation between

the window-averaged hydrophobicity trace and the burial trace

computed from the crystal structure. Thus, the model-predicted

burial traces, which are derived from sequence alonewithout any

fitting parameters, were compared to a fitted-window control

method in which information about the crystal structure was

used to produce the best correlation possible.

In Figures 2A–2D, the distributions of Pearson correlations

between burial traces from sequence and corresponding crystal

structure are plotted for the four relevant classes of single protein

domains from the Structural Classification of Proteins (SCOP)

(Murzin et al., 1995). In all classes the distribution of traces

derived from burial modes (blue solid curves) had positive

mean (ranging from 0.17 to 0.25, Figure 2E), and more signifi-

cantly, roughly 20% of all sequences produced a correlation

with the crystal structure of 0.4 or better (Figure 2F), indicating

that the model can successfully predict the qualitative shape of

a protein’s burial trace from sequence alone in thousands of

cases. The success of this performance is underlined by a

comparison with the control distributions computed for random

permutations of each sequence: whereas the fitted-window

averaging method, which makes use of information from the

crystal structure, produces a positive correlation on average

even for random control sequences (dashed orange curves),

the use of burial modes involves no fitting to the structure and,

therefore, exhibits far less correlation for randomly permuted

sequences (dashed cyan curves). Thus, the computation of

energetically optimal burial traces from the burial modes of

primary sequences successfully extracts accurate tertiary
967–975, July 13, 2011 ª2011 Elsevier Ltd All rights reserved 969



Figure 1. Computation of Burial Traces through Linear Optimization of Burial Modes

(A) A protein in a collapsed globular conformation may be represented as a chain with residues indexed by the number s that have position r(s) (red and blue

vectors) relative to the center of mass of the globule. The root-mean-square distance rrms (yellow vector) from the globule center averaged over the whole polymer

is necessarily less than themaximum radiusR (green vector). Each position s has an associated hydropathy 4(s) determined by the type of amino acid at that point

along the chain.

(B) The three lowest-energy burial modes for the sequence of sperm whale myoglobin are plotted and colored on the myoglobin crystal structure (PDB ID 1BZP),

with blue corresponding to most buried and red to least buried. Each individual mode has a ratio of mean-square to max-square radius far below the value of 0.6

for a sphere of uniform mass density and, therefore, fails to satisfy the steric constraint.

Thus, in (C) the optimal solution (which is both colored on the crystal structure on the right-hand side as in B, and also plotted on the left-hand side in blue against

the same trace computed from the crystal structure in red) must be constructed frommultiple burial modes, with the heaviest weights ck not corresponding to the

modes of lowest energy. The Pearson correlation between model and crystal structure is 0.58.

Other representative burial traces for various sequences can be found in Figure S1.
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structural information for thousands of proteins in the space of all

observed folds without the use of any fitted parameters. It is

moreover quite encouraging that the burial mode approach is

noticeably more accurate in extracting this information from

a-helical proteins than from ones dominated by b structure (Fig-

ure 2F), as this result is consistent with the underlying assump-

tions of the model: the long-range intrachain contacts necessary

for the formation of b sheets are not represented in the model,

and therefore, onewould expect b-rich domains to bemore chal-

lenging for the model to describe.
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The data in Figure 2 demonstrate that the burial mode

approach succeeds in roughly predicting the pattern of burial

for some, but not all, protein domains. Although a high correla-

tion between the optimal burial pattern predicted from sequence

and that observed in the crystal structure does not establish with

certainty that the burial mode picture is able to describe the

conformational energetics of a given protein, a low correlation

is a good indication that the approach has failed. Thus, in order

to use burial modes to study the conformational fluctuations that

underlie allosteric motion in a given protein domain, it is clearly
s reserved



Figure 2. Application of Burial Mode Anal-

ysis to the Space of Protein Folds

Histograms of Pearson correlation between burial

traces predicted from sequence and extracted

from structure are plotted for (A) a-helical (1985

sequences), (B) b stranded (2197 sequences), (C)

mixed a-b (5318 sequences), and (D) small non-

a-b domains (619 sequences) in the SCOP space.

(E) and (F) respectively report the mean correlation

and fraction of domains above correlation 0.4

for each distribution. For each sequence structure

pair, the burial trace was first computed from

the crystal structure, and also predicted from

the sequence. The distributions of correlations

between these pairs of traces are drawn in each

panel as the blue solid curve. The dashed cyan

curves show the distributions of correlations for

the same comparison between burial mode

prediction and crystal structure, but for control

sets of random permutations of the sequences.

Because the solid blue distributions in all cases

have a mean and mode substantially greater than

zero, whereas the dashed cyan distributions do

not, it is clear that the burial mode method is ex-

tracting accurate tertiary structural information

from the real sequences, but not from the random

control sequences. The solid red curves were

generated by averaging sequence hydrophobicity

within windows of fixed width along the chain, and

finding for each sequence the width that optimized

the correlation between the window-averaged

hydrophobicity trace and the crystal structure

burial trace. The dashed orange curves apply the

same optimally fitted-window method to random

control permutations of sequence for each struc-

ture. Because the window-fitting method uses

information from the crystal structure, its distri-

bution has a positive mean even for randomly

permuted sequences (dashed orange curve), and

yet applying the same method to real sequences

(solid red curve) cannot outperform the distribu-

tion of burial mode-based predictions (solid blue

curve), which are derived from sequence alone.
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necessary, if not sufficient, that the predicted optimal burial trace

correlate well with the known structure of the domain. Thus,

burial trace correlation becomes a useful litmus test for selecting

allosteric systems for study.

A previous study (Kidd et al., 2009) collected a set of eight

experimentally characterized single-domain allosteric systems

from the structural biology literature and analyzed them compu-

tationally. In the present work five out of eight of these systems

demonstrated predicted-to-measured burial trace correlations

of 0.4 or higher and were, therefore, selected for further analysis.

The cutoff of 0.4 was chosen because it is approximately one

standard deviation above the mean for the correlation distribu-

tions plotted in Figure 2, and because it is roughly the point at

which the similarities between the predicted and measured

burial traces start to be qualitative and obvious from visual

inspection. It should be noted that approximately one in five

sequences in the space of all SCOP domains would satisfy this

correlation criterion (Figure 2F).

To assay whether analysis of burial modes aids the identifica-

tion of allosteric couplings between sites in a polypeptide with
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a given amino acid sequence, one need only analyze the corre-

lated motions in that polypeptide’s ensemble of low-energy

conformations (Gunasekaran et al., 2004; Kidd et al., 2009;

Kumar et al., 2000; Levitt et al., 1985; Süel et al., 2003; Swain

and Gierasch, 2006). Figure 3A shows a heat map of the pairwise

covariances (Liu and Nussinov, 2008) in squared radial position

between different sites along the length of the lymphocyte func-

tion-associated antigen-1 (LFA-1). LFA-1 binds to intracellular

adhesion molecule (ICAM)-1, which is involved in activation of

a downstream immune response (Last-Barney et al., 2001;

Zhang et al., 2009). Allosteric inhibitors developed to block the

LFA-1 interaction with ICAM have been found to bind LFA-1 at

a site distant from points on the protein known to interface

directly with ICAM. The absolute value of the sum of the columns

of the burial covariance matrix that correspond to residues on

the protein that contact the allosteric inhibitor (Zhang et al.,

2009) estimates the magnitude of the conformational response

at each point along the protein to the binding of the inhibitor.

As one would expect, the binding site of the inhibitor is the region

of the protein most strongly affected by the binding event
967–975, July 13, 2011 ª2011 Elsevier Ltd All rights reserved 971



Figure 3. Allosteric Motion Predicted from Conformational Fluctuations

(A) Using the burial traces of LFA-1 conformations 1 kBT above the energy minimum, a burial covariancematrix may be constructed between pairs of points s and

s0 along the chain, where covðs; s0Þ= hr2ðsÞ r2ðs0Þi � hr2ðsÞihr2ðs0Þi, and the brackets denote an average over all burial traces in the 1 kBT ensemble. In the color

map shown here, blue denotes negative covariance and red denotes positive.

(B) Summing together the covariance matrix columns corresponding to residues in LFA-1 that contact the allosteric isoflurane inhibitor (green triangles) and

computing the absolute value of the result generates a measure of the amplitude of structural response to drug binding (blue line). The most strongly responding

regions of LFA-1, aside from the site of drug binding itself, are those that are part of the ICAM-LFA-1 protein-protein interface (red squares).

(C) The same method is applied to analysis of allosteric motion in the proteins CheY (top left), b-lactoglobulin (top right), H-ras (bottom left), and S100A6 (bottom

right).

Tests of statistical significance are reported in Figure S2.
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(Figure 3B). However, it is quite notable that the residues that

interact with ICAM nevertheless are clustered at other sites

along the chain that undergo especially large structural rear-

rangements. Put another way, the summed covariance response

curve correctly identifies the ICAM-LFA-1 protein-protein

interface (Last-Barney et al., 2001) as a strong allosteric

responder to inhibitor binding. An identical analysis performed

for the proteins H-ras (Buhrman et al., 2010), b-lactoglobulin

(Wu et al., 1999), S100A6 (Otterbein et al., 2002), and CheY

(Formaneck et al., 2006) yields comparable results: in all cases

the expected response to the stimulus localizes well with the

region known from experiment to undergo an induced conforma-

tional change (Figure 3C).

To test the significance of this result, a metric for the overlap

between the predicted and known allosteric response was

generated for each protein, where the blue curves in Figure 3

were normalized to their maximum height outside the region of

the stimulus (green triangles) and summed over the region of

the response (red squares). This number was compared in

each case to a control distribution generated from random

sequence permutations whose predicted burial traces corre-

lated with coefficient 0.4 or better with the known structure (Fig-

ure S2A). The p values generated from this procedure (LFA-1,

0.12; CheY, 0.02; b-lactoglobulin, 0.19; H-ras, 0.04; S100A6,

0.40) indicate overwhelming significance for the set as a whole,

although the value for S100A6 on its own is marginal due to

the large size of the allosterically responsive region. Similar

results were obtained when the response per residue for the allo-

steric systems in Figure 3 was compared to the distribution of

normalized pairwise residue-to-residue burial covariances for
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each wild-type sequence (LFA-1, 0.14; CheY, 0.03; b-lactoglob-

ulin, 0.09; H-ras, 0.17; S100A6, 0.17) (Figure S2B). However, it

should further be noted that themetric for significance employed

here does not take into account other features of apparent

agreement between the predicted and measured response,

such as the clustering of the relevant residues near local maxima

in the predicted response, and the absence of any predicted

response peaks that are dramatically higher than the response

expected in the experimentally predicted region. These addi-

tional features should further increase our confidence that the

burial mode model employed here allows one to extract a signif-

icant amount of physical information about allostery from

sequence alone.

Perhaps most striking of all, the basis for the allosteric motion

in each case becomes clear upon examination of the specific

burial modes that contribute to each native ensemble. For the

proteins LFA-1 (top), H-ras (middle), and S100A6 (bottom), Fig-

ure 4 identifies specific pairs of low-energy modes whose

competition within the native ensemble gives rise to allostery.

Strikingly, for each protein there is one mode whose peaks line

up well with the residues associated with a ligand-binding event,

and another mode whose peaks line up well with the residues

known to exhibit an induced conformational rearrangement as

a result of ligand binding (see Figure S3 for tests of statistical

significance). As the scatter plots on the right-hand side of Fig-

ure 4 show, the weights on each pair of modes display a signifi-

cant nonzero correlation (LFA-1, �0.30 to �0.42; H-ras, �0.42

to �0.51; S100A6, �0.85 to �0.97) over a range of low-energy

excitations above the ground state (1–5 kBT). Thus, a low-energy

structural rearrangement that changes the weight of one mode
s reserved



Figure 4. Allostery from Switching between

Specific Pairs of Burial Modes

For the proteins LFA-1 (A), H-ras (B), and S100A6

(C), the expected allosteric motion is revealed to

be the result of a trade-off between two different

low-energy burial modes present in the low-

energy, native ensemble. In each case the resi-

dues corresponding to the experimentally known

stimulus to the protein line up well with the peaks

of one mode (number 2 for LFA-1, number 2 for

H-ras, and number 1 for S100A6), whereas the

residues known from experiment to rearrange

themselves in response to the stimulus localize

well with the peaks of another mode (number 5 for

LFA-1, number 3 for H-ras, and number 3 for

S100A6). The significant nonzero correlation in the

weights given to each pair of modes at low energy

is preserved over a range of energies above the

ground state in the native ensemble (right-side

panels). Tests of statistical significance are re-

ported in Figure S3.

Structure

Vying Steric and Hydrophobic Effects in Allostery
through the binding of a ligand necessarily must produce a reac-

tion along the other mode in the statistical ensemble of confor-

mations because of the correlation between the weights for the

modes at low energy. In retrospect, it should not be unexpected

to observe this alignment of an allosterically coupled site with

a single mode: the way to get a coherent, large-scale structural

rearrangement out of a small structural perturbation is to

concentrate that perturbation’s impact along a single conforma-

tional degree of freedom whose associated energy scale for

deviation from equilibrium is small. The simplicity of this explana-

tion suggests that analysis of burial modes might be a quite

generally applicable tool for characterization of allosteric

motions in proteins, and may open the door to new strategies

for selection of target sites for drug design.

DISCUSSION

Allostery is challenging to describe in analytical terms because it

is, on the one hand, a collective phenomenon that arises from the

convergence of many weak interactions among a large number

of degrees of freedom, yet, on the other hand, it often can be trig-

gered by a small perturbation that acts on only a few of those

degrees of freedom. This inherent sensitivity rules out a straight-

forward linear response theory, and has spurred the innovation
Structure 19, 967–975, July 13, 2011
of various augmented elastic models

(Daily and Gray, 2009; Hawkins and

McLeish, 2004; Miyashita et al., 2003),

which aim to capture dynamics by

making use of predetermined information

about the beginning and endpoint of the

expected conformational change. The

model presented here is, in its own way,

elastic, insofar as it associates an energy

scale with each independent mode out

of which a given conformation is con-

structed. What distinguishes the burial

mode approach is that it sacrifices atom-

istic detail in favor of a highly approximate
steric constraint, and by doing so succeeds in introducing

much-needed nonlinearity into the model without rendering

things intractable. Thus, the description of allosteric motion is

broken into two steps: first, one solves a linear problem to get

the burial modes specific to a given sequence, and then the

constrained competition among these modes in the presence

of sterics can give rise to the multistability needed for allostery

(Kumar et al., 2000). A particularly intriguing outcome from this

line of inquiry is that sites involved in allostery in a protein tend

to line up strongly along single burial modes of the sequence.

In this light, burial modes may be seen as the conformational

pressure points of sequence that have been selected by

evolution.

It should be noted in closing that, although themethod of burial

mode analysis presented here was applied to the study allostery,

it arguably has the potential to motivate other new lines of inquiry

into how function emerges from primary sequence in proteins.

Armed with a model of how small changes in a pattern of

sequence hydrophobicity can give rise to global rearrangements

in a polypeptide chain, researchers will have the opportunity

to develop a fuller understanding of how various mutations

lead to temperature sensitivity, structural instability (Liu and

Nussinov, 2008), and aggregation. It will also be worthwhile

to investigate whether the mapping of burial optimization to
ª2011 Elsevier Ltd All rights reserved 973
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a linear programming problem might be co-opted into a more

sophisticated, full-atom structure prediction algorithm (Das

and Baker, 2008). The burial mode approach also suggests

a new lens through which to examine folding kinetics: low-

energy collective modes of the protein chain may provide

a natural coordinate system for charting folding pathways in

terms of a small number of highly relevant degrees of freedom.

Finally, the approximate, yet informative means for mapping

sequence to structure described in this work has the distinct

advantage of being extremely fast; the search for the global

energy minimum of the myoglobin sequence takes less than

1 s on a 3.06 GHz Intel Core 2 Duo Processor. In this respect

a qualitatively new kind of tool may now be available to drug

designers, protein engineers, and evolutionary theorists alike in

their efforts to decode principles of protein architecture from

the wealth of genomic data produced by recent and future

breakthroughs in sequencing technology.
EXPERIMENTAL PROCEDURES

Proteins

In all cases the amino acid sequences used were taken from the FASTA

sequence of a structure in the Protein Data Bank (PDB) at http://www.rcsb.

org. The structures and sequences used were: myoglobin/1BZP, CheY/

1F4V, H-ras/3K8Y, LFA-1/3F74, S100A6/1K9K, and b-lactoglobulin/1BEB.

Burial traces were generated from crystal structures by computing the center

of mass of all polypeptide atoms in the PDB file and then measuring the

distance of each a carbon from that center point. The resulting squared

distance from the center was averaged within windows four residues in width

all along the chain to remove high-frequency noise from local a-helical oscilla-

tions in position.

Optimization

The bond stiffness k was chosen so that the corresponding free random walk

would have a mean-square intermonomer distance of unity, fixing the units of

length in the model to be the typical distance between a carbons in a protein

chain. Density of monomers in a collapsed spherical globule was estimated

from the TIM barrel structure (PDB ID 2VXN), idealized as a sphere of radius

4. This density was used to calculate the maximum radius for a globule of N

residues from

R2 =

�
3N

4pr0

�2=3

:

The hydropathies corresponding to each amino acid were taken from the

standard Kyte-Doolittle scale but rescaled by a constant factor to ensure

that, regardless of the number of residues in the chain, the energy change

associated with motion from the surface to the center of the globule corre-

sponded to 0.5 kT for glutamate. This fixed the energy scale of the hydro-

phobic effect at the correct order of magnitude for known transfer free ener-

gies of amino acids from water to solvents such as octanol or ethanol.

For a protein of N residues, an N by N energy matrix was constructed from

the sequence and diagonalized, yielding a matrix of independent eigenmodes.

The elements of this matrix were squared to yield a burial mode matrix. The

MATLAB function linprog() was then used to find the lowest-energy combina-

tion of burial modes satisfying the linear constraints (see Supplemental Exper-

imental Procedures for MATLAB code).

To compute the low-lying conformations close to the ground state in

energy, an additional linear constraint was added to the linear programming

procedure, fixing the energy to remain below the chosen ceiling. The objec-

tive function optimized was then the dot product of the vector of burial

mode weights with a vector of N elements independently taken from a

normal distribution using the MATLAB function randn(). For all proteins dis-

cussed in this work, 500 random samples were generated in this way for

analysis.
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