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Abstract

Modeling the inherent flexibility of the protein backbone as part of computational protein design is nec-
essary to capture the behavior of real proteins and is a prerequisite for the accurate exploration of protein
sequence space. We present the results of a broad exploration of sequence space, with backbone flexibility,
through a novel approach: large-scale protein design to structural ensembles. A distributed computing
architecture has allowed us to generate hundreds of thousands of diverse sequences for a set of 253 naturally
occurring proteins, allowing exciting insights into the nature of protein sequence space. Designing to a
structural ensemble produces a much greater diversity of sequences than previous studies have reported, and
homology searches using profiles derived from the designed sequences against the Protein Data Bank show
that the relevance and quality of the sequences is not diminished. The designed sequences have greater
overall diversity than corresponding natural sequence alignments, and no direct correlations are seen
between the diversity of natural sequence alignments and the diversity of the corresponding designed
sequences. For structures in the same fold, the sequence entropies of the designed sequences cluster together
tightly. This tight clustering of sequence entropies within a fold and the separation of sequence entropy
distributions for different folds suggest that the diversity of designed sequences is primarily determined by
a structure’s overall fold, and that the designability principle postulated from studies of simple models holds
in real proteins. This has important implications for experimental protein design and engineering, as well as
providing insight into protein evolution.
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The aim of protein design is to find amino acid sequences
that are compatible with specific protein structures. Screen-
ing of sequences for compatibility with a protein structure
was introduced in the early 1980s, with the definition of the
inverse folding problem (Pabo 1983). Whereas protein fold-
ing involves finding the native three-dimensional structure
for a particular amino acid sequence, the inverse folding
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problem seeks to define the entire set of sequences that can
specifically form a stable protein with some target structure.
Protein design, whether experimental, computational, or
some hybrid approach, provides important clues towards a
solution of the inverse protein folding problem by sampling
the sequence space of known protein structures (Pande et al.
1997).

An important practical use of protein design is in the
stabilization of known protein folds (Dahiyat 1999). The
optimization schemes used in most protein design algo-
rithms are written to find local or globally optimized se-
quences, with the lowest or near-lowest free energy of fold-
ing for an existing target structure; much recent work has
addressed this topic (Desjarlais and Clarke 1998; Shakh-
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novich 1998; Koehl and Levitt 1999a; Voigt et al. 2000;
Wernisch et al. 2000; Pokala and Handel 2001). Finding
sequences that will form a given structure often results in
sequences with increased stability over the wild type (Mal-
akauskas and Mayo 1998). An exciting potential direction
for protein design lies in creating totally novel protein struc-
tures. The successful design of a family of right-handed
coiled coils demonstrated the capability of computational
protein design to create novel structures, and highlighted the
importance of allowing for backbone flexibility in the de-
sign process (Harbury et al. 1998).

Experimental techniques for protein design have also en-
joyed much success in the last decade. Rational design,
based on structural analysis and site-directed mutagenesis,
has been used extensively in redesigning enzymes for in-
creased stability and/or altered function (Cedrone et al.
2000; Kazlauskas 2000). The most successful experimental
methods for protein design involve directed protein evolu-
tion, using genetic recombination of natural diversity and in
vitro functional assays to explore sequence space (Tobin et
al. 2000; Bornscheuer and Pohl 2001). Directed protein evo-
lution generates a diversity of functional sequences through
iterations of mutation and recombination, allowing the ex-
ploration of areas of sequence space that are not accessible
using rational design or random mutagenesis techniques.
However, because current methods for in vitro protein evo-
lution are limited to searching spaces in the range of 10°—
10° sequences, computational techniques for reducing the
search space for experimental protein design are of great
importance and current relevance (Kono and Saven 2001;
Voigt et al. 2001). By computationally designing large li-
braries of viable sequences, favorable and unfavorable re-
gions of sequence space could be identified and combina-
torial libraries could be greatly constrained by tailoring the
range of diversity allowed at each position of the protein.

Most computational studies to date have produced de-
signed sequences that tend to resemble the native sequence
of the protein structure (Koehl and Levitt 1999b, 2002a;
Kuhlman and Baker 2000; Raha et al. 2000). This result has
generally been attributed to the constraints imposed by us-
ing fixed backbones. Backbone flexibility in the target
structure is desirable when computationally designing
amino acid sequences, because it is well known that natural
proteins use small backbone adjustments to accommodate
disruptive mutations (Eriksson et al. 1992; Baldwin et al.
1993). Indeed, when designing sequences to a structure, one
does not expect these sequences to fold to exactly the target
structure with zero deviation, but rather some ensemble of
highly similar structures. Incorporating backbone flexibility
into computational protein design more realistically models
real proteins, and is a critical prerequisite for de novo pro-
tein design, where the exact structure of the resulting protein
cannot be known (Desjarlais and Handel 1999).

Some recent studies have described methods incorporat-
ing some form of backbone flexibility, with excellent suc-
cess in designing sequences that stably fold to the target
structure (Su and Mayo 1997; Harbury et al. 1998; Desjar-
lais and Handel 1999). However, due to the extreme com-
putational demands of including backbone flexibility in the
design process, previous work has been limited to coarse-
grained variation of backbone structure parameters (e.g.,
relative arrangement of secondary or supersecondary struc-
ture element; Su and Mayo 1997; Harbury et al. 1998; or
designing only a subset of residues in the target protein;
Desjarlais and Handel 1999). In all cases, only a small num-
ber of minimum-energy sequences for several proteins of
interest were identified. Some recent work of note (Zou and
Saven 2000; Kono and Saven 2001) has developed a gen-
erally applicable statistical theory for exploring protein se-
quence space, analogous to other mean-field methods used
in protein design (Koehl and Delarue 1994; Lee 1994;
Koehl and Levitt 1999a), which does not require the explicit
articulation of minimum-energy sequences. Instead, this ap-
proach estimates amino acid probabilities at each residue
position, which are energetically consistent with a given
protein structure. In designing sequence profiles for protein
L, backbone flexibility was incorporated by considering
those sequence properties that were robust with respect to
21 backbone variants in an NMR ensemble (Kono and
Saven 2001).

In this study, using a distributed computing network
(Shirts and Pande 2000) of over 3000 processors has al-
lowed us to design hundreds of minimum-energy sequences
per structure, with the incorporation of fine-grain backbone
variability, for the set of all protein structures in the Protein
Data Bank (Berman et al. 2000) of length less than 100
residues, solved by X-ray crystallography: 253 structures in
total. Designing to an ensemble of slight structural variants
of the target structure produces a large diversity of high-
quality sequences, allowing for the exploration of a much
broader range of sequence space than previous studies, and
leading to novel insights into the determinants of protein
sequence space.

Results

The Genome@home distributed computing architecture al-
lowed for the collection of a very large data set (Table 1).

Table 1. Summary of the Genome @home data set

Total number of structures 253
Total number of backbone variants used for design 25,300
Total time of data collection 62 days

Processors available 3000
Total number of distinct sequences generated 187,342
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For each of the 253 structures in our data set, roughly 750
unique sequences were amassed over a period of 2 months.
With a total of almost 200,000 processor days (~3000 active
processors over the 62-day course of data collection), al-
most 200,000 distinct sequences were returned. These over-
all figures agree well with tests that show a protein of 100
amino acids requiring roughly 24 h for completion of one
full sequence design on a 500-MHz Celeron workstation.

Generation of meaningful sequence diversity and the in-
corporation of backbone flexibility are two challenges fac-
ing modern protein design. By designing sequences for an
ensemble of slightly varying three-dimensional structures,
we achieve these two goals simultaneously. To create struc-
tural ensembles for each of the 253 structures studied, 100
structural variants were generated for each protein by gently
perturbing the dihedral angles of the protein backbone (see
Materials and Methods). The RMSD (C, RMSD, specifi-
cally, is used throughout this study) of each variant is no
more than 1 A from the native target structure. For example,
Figure 1 shows 10 structural variants of the SH3 domain
from Abl tyrosine kinase (Musacchio et al. 1994) superim-
posed on the native crystal structure.

For clarity, let us briefly define some terms used in this
paper: “Residue entropy”, S(i), refers to the informational
entropy of the set of amino acids that appear at any one

Fig. 1. Ten representative backbone traces from the structural ensemble
used in designing sequences for labo, the SH3 domain from Abl tyrosine
kinase. All structures are within 1 A RMSD of each other.
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position, or column, in a sequence alignment, and is re-
ported in its exponentiated form, exp(S(i)) (see Materials
and Methods). This statistic, which ranges from 1 to 20,
gives a rough measure of how many different amino acids
appear at a sequence position. “Sequence entropy” refers to
the mean residue entropy over an entire set of amino acid
sequences. The sequence entropy quoted for any one struc-
ture in this study refers to the entropy of the entire set of
sequences designed from the 100 variants of that structure.

Increased sequence diversity with structural ensembles

To assess the amount of diversity generated by our method,
the entropy of the designed sequences for each structure was
calculated (Shenkin et al. 1991). Figure 2a displays the dis-
tribution of residue entropies for each position in the total
set of 253 structures. The residue entropies range from 1.0
to 14.4, with a mean of 6.6. As a control, between 70 and
100 sequences were designed for the fixed native backbone
of each of the 253 target structures (i.e., no structural en-
sembles were used). The residue entropies of these se-
quences range from 1.0 to 3.3, with a mean of 2.4.

To put the designed sequence sets into context within
sequence space, some relevant baseline is needed for com-
parison. A trivial space against which to make comparisons
is the set of all possible amino acid sequences of length L.
This space is of size 20, with a residue entropy at each
position of exp(S(7)) = 20. A more realistic upper bound
for sequence diversity was calculated for each structure as
follows. At each position, each rotamer from the rotamer
library used by the sequence prediction algorithm (Raha et
al. 2000) was tested for steric clashes with the atoms of the
peptide backbone. Any rotamers that clashed with the back-
bone were ignored, and the remaining set of all sterically
allowed amino acids at each position was used to calculate
sequence entropy. This set encompasses “what we have to
work with” for each structure: the set of all amino acid side
chains that could fit onto the protein structure at each po-
sition. The mean of the residue entropies over all positions
in a protein, using the amino acid frequencies given by this
process of identifying all sterically allowed rotamers, serves
as an upper bound on the size of the structure’s sequence
space.

Figure 2a shows that the residue entropy distribution of
the sterically allowed set of rotamers is more sharply peaked
and shifted higher than the residue entropy distribution of
the final designed sequences. This shows the effects of the
other terms in the energy function, such as hydrogen bond-
ing and solvation, in constraining the sequence space of a
protein structure. Figure 2b plots the distribution of se-
quence entropies (i.e., mean residue entropy over an entire
sequence) for the 253 structures. The sequence entropies for
the designed sequences have a more sharply peaked distri-
bution than the overall pool of designed residue entropies,
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Fig. 2. Entropy distributions of designed and sterically allowed residues
and sequences. (A) Residue entropies of all designed positions are plotted
in black. As well, the set of all sterically allowed rotamers at each position
of each structure was calculated. The distribution of residue entropies for
this set is plotted in gray. (B) The sequence entropy (mean residue entropy)
for each structure was calculated. The distribution of sequence entropies
for the designed sequences is plotted in black, with the sequence entropy
from the allowed rotamers in gray.

and the separation between the designed and sterically al-
lowed distributions is even greater than in the case of resi-
due entropy.

Previous studies have reported designed sequences re-
taining a high degree of similarity with the native sequence
of the target structure (Koehl and Levitt 1999b; Kuhlman
and Baker 2000; Raha et al. 2000). In a study on a set of 108
proteins, Kuhlman and Baker found that 51% of the core
residues in designed sequences and 27% of all residues
matched those found in the native sequence of the target
structure. Koehl and Levitt found a 36% average identity to
the native sequence over ten independent designs of 1ctf,
but only a 16% average identity to native in 13 designed

TIM sequences. In a study using a very slightly modified
version of the design algorithm used here, Desjarlais and
colleagues (Raha et al. 2000) found a 24%-28% identity to
the native target structure. The results of applying our
method to single, fixed, native backbones agree well with
results such as these. When only the native fixed backbone
is used for design (as described above), average identity to
the native sequence of the target structure ranges from 1%
to 40%, with a mean of 24% (Fig. 3). For buried positions,
this value ranges from 0% to 75%, with an average of 43%.
These distributions, both in mean and range, are strikingly
similar to those produced by Kuhlman and Baker. When
structural ensembles of 100 structural variants are used as
design targets, the average identity of the resulting se-
quences to the native sequence drops to 17%, and the av-
erage pairwise identity of the sequences is 29%. The distri-
butions of identity to the native sequence for both full se-
quences and core positions alone also narrow dramatically
when structural ensembles are used. This suggests that the
inclusion of backbone flexibility, even in the fairly simple
manner used here, allows for the design of a much greater
diversity of sequences compatible with the target structure.

How large a structural ensemble is needed to generate
substantial sequence diversity by this method? In Figure 4,
we see that an ensemble of just 30 structural variants results
in a sequence set with “maximum” entropy. Adding more
structural variants will not increase the diversity of the se-
quence set, as measured by sequence entropy. It is tempting
to suggest that the sequence space for a structure has an
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Fig. 3. Distribution of average amino acid identity of the designed se-
quences to the native target sequence for 253 structures. Identity to the
native target sequence was calculated first for the set of sequences designed
using only a single fixed target backbone as a target template (all residues:
black dashed line; buried residues: gray dashed line). Using structural
ensembles of 100 structural variants as target templates narrows and lowers
the distribution of identity to the target native sequence (all residues: black
solid line; buried residues: gray solid line).
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Fig. 4. Sequence entropy increases with the size of the structural ensemble
used for design. The traces represent the sequence entropy of the designed
sequences obtained when using increasing numbers of structural variants as
targets for design. The black traces represent the two structures that produced
sequence sets with the highest and lowest average sequence entropy. The
gray traces are for 100 different structures randomly picked from the re-
maining 251 proteins.

entropy close to that which is reached by the method of
designing to a structural ensemble. However, adding more
structural variants does result in additional unique se-
quences, even though the entropy of the sequence set does
not increase, showing that we have sampled only a fraction
of sequence space. Ideally, this means that our sampling of
sequence space, although sparse, is well-distributed
throughout all the regions of that space. The maximum en-
tropy, asymptotically approached as the structural ensemble
grows, is noticeably distinct for each structure, varying
evenly over a range from 3.2 to 6.8. There is a weak cor-
relation between sequence entropy (i.e., mean residue en-
tropy) and sequence length, but this disappears altogether
once sequences are longer than 40 residues.

In any computational design study, it is important that a
substantial fraction of the designed sequences are reason-
able, that they would indeed take on a stable native structure
closely resembling that of the target protein. The design
algorithm used in this study has been shown to produce
viable sequences in previous work (Desjarlais and Handel
1995; Raha et al. 2000). A number of recent papers have
assessed the efficacy of computational design methods by
using sequence profiles to compare the designed sequences
to the native structure (Koehl and Levitt 1999b, 2002a;
Raha et al. 2000; Kono and Saven 2001). Using a sequence
profile generated from a set of designed sequences to scan
a natural sequence database should be able to identify true
homologues of the target structure. To assess the quality of
our designed sequences, we performed such a test. PSI-
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BLAST(Altschul et al. 1997) searches against the PDB us-
ing our designed sequence sets as input profiles produced
significant hits (E < 1) against the target structure and/or its
structural homologues for 75% of the structures, with very
few false positives (i.e., very few significant hits against
nonhomologs). Figure 5 shows the distribution of PSI-
BLAST E-values (a measure of sequence matching signifi-
cance) for the 241 of 253 sequence profiles that produced
any hits whatsoever against the PDB. At a significance level
of E< 1.0, 74% (186 of 253) of the sequence profiles pro-
duced hits to putative structural homologues; 92% (172 of
186) of these are indeed hits to frue structural homologs. In
fact, half of the 241 profiles identify the native target struc-
ture itself as a significant match. True homologs are found
even by sequence profiles with very low sequence identity
to the target structure (10%—20%). As expected, the signifi-
cance of hits generally increases slightly as the sequence
profiles become more native-like (Fig. 5).

Sequence diversity within folds

The 253 structures in our data set were clustered, based on
structural similarity, using the VAST structure alignment
algorithm (see Materials and Methods). These groups rep-
resent sets of structurally similar proteins, or folds. Our data
set included six folds that contained at least 10 proteins each
(Table 2). All structures in a fold are within 3 A RMSD of
each other. Figure 6 shows the distribution of sequence
entropies of the designed sequence sets for the six folds.
Although the average identity of designed sequences within
a fold is quite low (26%—-33%; Table 2), the entropies of the
designed sequence sets for each structure within a fold clus-
ter together quite tightly. The sequence entropy distribu-
tions for each fold peak around a mean (see Table 2), with
relatively little variation around that mean. Interestingly, the
residue entropies across corresponding positions in se-
quences within a fold do not show significant correlations
(data not shown). In other words, the range of allowed
amino acids at any one position seems to vary from struc-
ture to structure within a fold, but the fold itself tightly
defines the overall diversity of the allowed sequence space.

It is tempting to suggest that there might be some struc-
tural characteristic, shared within a fold and different be-
tween folds, that determines sequence entropy. Definition of
such a metric would not only allow some fundamental in-
sight into the sequence-structure relationship, but could
serve as an empirical tool for prediction of sequence/struc-
ture properties, akin to the utility of contact order in pre-
dicting rates of folding kinetics (Plaxco et al. 1998). Several
such characteristics were tested: sequence length, alpha he-
lix character, beta sheet character, and contact order (see
Materials and Methods). None of these structural metrics
showed significant correlations with sequence entropy
(all regressions produced correlation coefficients below
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Fig. 5. Results of PSI-BLAST searches against the Protein Data Bank using sequence profiles generated from the designed sequences.
Two hundred forty-one of the 253 structures (those that gave hits) are represented here, ranked along the x-axis by the E-value of the
most significant hit obtained from that structure’s designed sequence profile. Dark columns represent sequence profiles that gave hits
against true structural homologues (true positives). Light columns identify sequence profiles that produced hits to nonhomologs (false
positives). A threshold of E < 1.0 gives an accuracy of 92% (176 of 186) for 74% (186 of 253) of all sequence profile searches. The
gray points plot the average amino acid identity of each sequence profile to the native target sequence.

R* = 0.4), suggesting that the structural determinants of a  quences (Bateman et al. 2000), which are defined solely by

fold’s sequence space are somewhat more complex. sequence similarity. The full alignment of natural sequences
All six groups of structures, defined initially by structural for each fold was obtained from PFAM. To reduce the
similarity, corresponded to PFAM families of natural se- inherent biases in natural sequence alignments, the align-

Table 2. Six folds and their corresponding PFAM families

PFAM family

name Toxin Copper-bind Rubredoxin Kunitz_BPTI Antifreeze® Phage_DNA_bind*
Structures included in fold classification letx lagb 1be7 1bpi lame lae3
1fas 1bxu 1bq8 1bpt 1gzi 1gkh
1fsc 1bxv 1bq9 1bti 1msi Imho
Intn 1byp 1brf 1dtx lops lvqa
Inxb liuz lcaa 1fan 2msi 1vqe
1qke 1pnd lcad 1knt 3msi lvqd
1qm7 2pcy lirn Inag 4msi 1vge
2ctx 3pcy liro 2knt Smsi Ivgf
2era 4pcy 1rb9 4pti 6msi 1vqg
3ebx Spcy 4rxn Spti Tmsi Ivgh
Sebx 6pcy Srxn Tpti 1vqi
Tpcy Trxn 8pti 1vgj
8rxn 9pti lyhb
Natural sequences Average % ID 39% 40% 44% 68% 37% 47%
Mean entropy 32 3.5 33 1.6 4.0 1.9
Designed sequences Average % 1D 30% 27% 33% 26% 30% 27%
Mean entropy 5.7 6.2 5.1 6.0 5.5 6.1

The structures were grouped together according to structural similarity and are identified by the names assigned to their corresponding PFAM sequence

families.
# These two PFAM alignments contain less than 30 sequences. Reliable conclusions about the “natural” sequence space of these folds cannot be drawn from

such small samples.
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Fig. 6. Sequence entropy distributions of designed sequences, grouped by structure into folds. The six folds are identified by the names
corresponding to their PFAM sequence families. The frequencies for each fold are normalized to unity. The sequence entropy

distribution for all 253 structures is also shown.

ments were reduced to 90% sequence redundancy, and were
weighted according to the Henikoff algorithm (Henikoff
and Henikoff 1994). These measures are critical in compen-
sating for the artefactually low diversity of natural sequence
alignments arising from the evolutionary relatedness of
natural sequences (Larson et al. 2000). This weighting is
unnecessary for designed sequences because each is com-
pletely independent of the others; the sampling of sequence
space is not biased by an evolutionary constraints. Summary
statistics for the designed and natural sequence sets for each
of the six folds are tabulated in Table 2. In all cases, the
designed sequence sets had greater overall sequence entropy
than the natural sequence alignments. Surprisingly, there
seems to be no correlation between the diversity (as mea-
sured by sequence entropy) of natural sequence alignments
and the diversity of corresponding sets of designed se-
quences, perhaps stemming from the aforementioned sam-
pling biases of natural sequence diversity.

Discussion

Defining sequence space

It is generally thought that the set of unique sequences that
can stably fold into a specified three-dimensional protein
structure must be enormous. Even just considering those
protein sequences we have found in nature, many natural
sequence alignments contain thousands of distinct se-
quences. In this work, we initially defined the sequence
space of a structure as all those sequences that will fold to
a low free-energy structure anywhere within 1.0 A RMSD
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of the original protein backbone. Within this definition, we
see that the sequence space for most structures is diverse
and likely quite large. A very striking observation is that
there is no general trend in overall sequence entropy for the
structures studied. On the contrary, a broad range of se-
quence entropies is seen across the 253 structures, in agree-
ment with another recent study using a different design
algorithm (Koehl and Levitt 2002b). However, by looking
at several proteins within the same fold, across several
folds, we also see here that structures sharing an overall fold
do tend to have quite similar sequence entropies.

The use of protein folds, as opposed to individual struc-
tures, as landmarks in sequence space facilitates meaningful
comparisons between experimental or computational explo-
rations of sequence space and those regions of sequence
space known to be inhabited by natural protein sequences.
As computational protein design has become more trac-
table, a number of recent studies have sought to compare
sets of designed sequences to their natural counterparts, by
looking at the identity of designed sequences to the native
sequence of the target structure. Instead of comparing de-
signed sequences to the native sequence alone, it is more
meaningful to make comparisons against the natural se-
quence alignment of structural homologs (see, e.g., Koehl
and Levitt 2002b). Natural sequence alignments are a reli-
able, albeit small, sample of sequence space, to which we
can compare larger computationally predicted samples of
the same sequence space. By broadening the boundaries of
sequence space to encompass larger ensembles of similar
structures, meaningful comparisons to natural sequences
and structures can be made, while taking into account the
known plasticity of proteins.
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Backbone flexibility in protein design

Incorporating backbone flexibility is of general importance
to computational protein design, and is certainly a prereq-
uisite for de novo structure design, where the exact structure
of the target is not known. Although computational protein
design does not seek to directly simulate a physical process,
it is highly desirable to build the realistic behavior of pro-
teins (i.e., backbone relaxation to accommodate mutations)
into design algorithms. Previous studies incorporating back-
bone flexibility, although quite successful, have been hin-
dered by the increased computational complexity of anneal-
ing in conformation space on top of annealing in sequence
space (Su and Mayo 1997; Harbury et al. 1998; Desjarlais
and Handel 1999). By utilizing a distributed computing ar-
chitecture, we have been able to incorporate fine-grained
backbone flexibility in a large-scale protein design effort.

Designing to a structural ensemble is a fairly simple way
of incorporating backbone flexibility, but we see that it
allows for a much broader search of sequence space than
fixed-backbone methods. Designing to a single, fixed back-
bone produces results very similar to other recently pub-
lished studies. Designing to a structural ensemble, however,
produces a much greater diversity of sequences, and allows
movement away from the region of sequence space imme-
diately surrounding the native sequence. Homology
searches against natural sequence databases (a method used
by a number of recent studies to confirm relevance of their
designed sequences) show that the quality of these se-
quences is not diminished. In fact, the increased diversity of
the sequence set improves the utility of designed sequence
libraries in fold recognition for structural and functional
genomics (S.M. Larson, A. Garg, J.R. Desjarlais, V.S.
Pande, in prep.).

Designability

The concept of designability (Li et al. 1996, 1998; Helling
et al. 2001) has been proposed as an explanation for the
oft-noted observation that certain protein structures or folds
are more commonly seen in nature than others (Chothia
1992; Orengo et al. 1994; Murzin et al. 1995; Brenner et al.
1997). Designability is defined simply as the number of
sequences that can fold into a specific structure. Numerous
theoretical studies have investigated this property through
complete enumeration of sequences and structures of lattice
(Buchler and Goldstein 1999, and references therein) and
off-lattice models (Miller et al. 2002). In this study, we can
estimate designability of real protein structures by compar-
ing the sequence entropies of large sets of diverse designed
sequences for different folds (see Fig. 6; Table 2). Recall
that the entropies of designed sequences for structures
within a fold cluster together tightly. The range of allowed
amino acids at any one position varies from structure to

structure within a fold, but the overall diversity of the al-
lowed sequence space seems to be defined by the structural
properties of the fold. The relatively tight clustering of se-
quence entropies within a fold and the separation of se-
quence entropy distributions for different folds suggests (a)
that the diversity of the designed sequences for a structure is
primarily determined by some structural characteristics of
its overall fold, and (b) that the designability principle pos-
tulated from studies of simple models may hold in real
proteins.

The results of this study are, of course, based on our
particular model of the protein sequence—structure relation-
ship, and it would be of great interest to see how the results
of other theoretical and/or experimental protein design stud-
ies of a similar scale might compare. Most importantly,
further theoretical and experimental work is needed to iden-
tify the specific structural characteristics that determine a
fold’s sequence space.

Materials and methods

Genome @home distributed computing cluster

Assessing the diversity of sequence space requires the design of
hundreds of thousands of protein sequences, an extremely demand-
ing computational task. To allow for a study of this scope,
a distributed computing project (Shirts and Pande 2000), dubbed
‘Genome@home’, was created (see http://genomeathome.stanford.
edu). During the course of this study, the global cluster of available
computers exceeded 3000 processors. The Genome @home server
sends out “work units,” a set of protein backbone coordinates and
design parameters, which are downloaded to the Genome @home
client running on a user’s computer. The client verifies the work
unit and runs the sequence prediction algorithm (Raha et al. 2000),
summarized below. Work units of the size used in this study re-
quire a few hours to a day on a 500-MHz Intel Celeron processor.
Upon completion of the sequence design, the results are verified by
the client and sent back to the server, where the data is again
verified, stored, and processed. At the time of this writing, the
Genome@home global cluster produces over ten thousand new
sequences daily.

Protein sequence design

Sequences were designed using SPA (Raha et al. 2000). Briefly,
protein structures are created by modeling the placement of amino
acid side-chain rotamers onto a fixed target backbone. Models are
scored using a combination of the Amber potential function
(Weiner et al. 1984) with OPLS nonbonded parameters (Jorgensen
and Tirado-Rives 1988), a surface-area term that accounts implic-
itly for solvation effects (Eisenberg and McLachlan 1986), and a
set of amino acid baseline corrections, which are critical for main-
taining reasonable amino acid compositions. The models are op-
timized by a sequence selection process that involves initial filter-
ing of rotamers, and a genetic algorithm for finding an optimal
sequence for the target structure. A diversity of sequences can be
designed for the same target backbone, as the initial population of
300 models is randomly assigned from a filtered rotamer library,
analogous to starting in a random point of sequence space. Two
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hundred rounds of model building and evaluation, selective recom-
bination, and a small amount of random mutagenesis are per-
formed, and the entire cycle is repeated 30 times.

To create an ensemble of 100 target backbones for each struc-
ture, a Monte Carlo expansion and contraction algorithm was used
to gently perturb the dihedral angles of the target backbone. The
algorithm works by creating random perturbations of up to 5 de-
grees to the dihedral angles of the target structure, followed by
simple Monte Carlo with smaller random perturbations until the
target RMSD from the native structure is reached. In this study, the
perturbation was constrained such that no two backbones in the
ensemble differ by more than 1.0 A RMSD. Studying an ensemble
of such slightly varying structures is justified by the fact that
structure determination techniques, NMR and X-ray crystallogra-
phy, are generally accurate to about the 1.0-A level. Each work
unit of sequence design is done against a fixed backbone (i.e., one
of the 100 variants of the target structure), and the designed se-
quences for all 100 variants are included in the resulting overall
sequence set for the target structure.

Structure and sequence analyses

The set of protein structures used for this study consisted of all
records in the Protein Data Bank (Berman et al. 2000) that con-
tained only one chain, less than 100 amino acids long, solved by
X-ray crystallography; a total of 292 structures. A sufficient
amount of data was returned to complete the described analyses for
253 of these structures. The complete set of designed sequences for
each structure can be obtained at http://gah.stanford.edu/cgi-bin/
results/SqlCgi.pl.

Residue entropy was calculated according to the standard for-
mulation:

20
S()= Xp,i) Inp; (i)
J=1

where p(i) is the frequency of residue type j at position i in the
alignment. To get a rough sense of how many amino acids appear
at a specific position, we display the residue entropy in its expo-
nentiated form, exp(S(i)), which ranges from 1 to 20. Sequence
entropy is the mean residue entropy over all residues i from 1
through L in the alignment, where L is the length of the sequence.
Structures were grouped into folds using VAST (Madej et al.
1995); all 253 structures were clustered into their assigned struc-
tural groupings from MMDB (Wang et al. 2000). Natural sequence
alignments corresponding to the VAST structural groupings were
obtained from PFAM (Bateman et al. 2000). To reduce sequence
bias and increase the relative diversity of the natural sequence sets,
the alignments were reduced to 90% redundancy and weighted
according to the Henikoff algorithm (Henikoff and Henikoff
1994). a-Helix and 3-sheet character for each structure was de-
fined as the fraction of residues assigned to the corresponding
secondary structure by DSSP (Kabsch and Sander 1983). DSSP
was also used to automate the identification of buried residues (i.e.,
less than 10% exposed side-chain surface area). Contact order was
calculated as described by Plaxco and colleagues (1998).
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