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Morphogen Gradient from a Noisy Source
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We investigate the effect of time-dependent noise on the shape of a morphogen gradient in a developing
embryo. Perturbation theory is used to calculate the deviations from deterministic behavior in a simple
reaction-diffusion model of robust gradient formation, and the results are confirmed by numerical
simulation. It is shown that such deviations can disrupt robustness for sufficiently high noise levels,
and the implications of these findings for more complex models of gradient-shaping pathways are

discussed.

DOI: 10.1103/PhysRevLett.94.078101

Successful embryonic development requires that differ-
ent regions within the embryo receive distinct sets of
developmental instructions. These instructions are often
relayed by a morphogen, a signaling molecule that induces
different cell fates at different concentrations. By establish-
ing concentration gradients of various morphogens during
early stages of development, the embryo provides each cell
with the positional information it needs for the proper
implementation of a body plan (Fig. 1) [1].

A morphogen gradient must reliably demarcate precise
and accurate boundaries between groups of cells despite
substantial genetic and environmental variability. Past
studies have argued that this task might be accomplished
in at least two different ways. First, it has been proposed
that the downstream pathway that responds to a morphogen
may have built-in mechanisms for interpreting sharply
defined positional information from a gradient that varies
quite substantially from embryo to embryo [2]. Second, the
shape of a gradient might itself be ‘“‘robust” to certain
kinds of interference. Eldar et al. have presented evidence
that the shape of the bone morphogenic protein (BMP)
gradient may not be altered significantly by several types
of mutations in the pathway responsible for establishing
the gradient [3]. Furthermore, their theoretical investiga-
tions of dynamical models for several gradient-shaping
pathways have uncovered steady-state solutions that are
effectively independent of certain kinetic parameters and
initial or boundary conditions [3,4]. Thus, there is some
indication that a pathway’s architecture could ensure that
the shape of the resulting gradient did not depend on the
rates of synthesis or the concentrations of some or all
components of the pathway.

The theoretical studies of robustness mentioned above
rely on deterministic reaction-diffusion equations that treat
the influxes of the components of a gradient-shaping path-
way as constant, time-independent quantities. However, a
growing number of experimental studies have demon-
strated that gene expression at the cellular level is an
inherently ‘“‘noisy’’ process, during which the rates of syn-
thesis of various gene products fluctuate substantially
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about their average values over time [5—8]. In the presence
of such noise, a gradient would be constantly driven away
from its steady-state shape, and might even adopt a differ-
ent shape, on average. Thus, the question of whether
deterministic models can adequately capture the dynamics
of morphogens that are, in reality, produced and secreted
stochastically is an open one whose answer may bear
profoundly on our understanding of how a viable final
product is assured during the process of embryonic
development.

This Letter introduces the novel dimension of time-
dependent noise to the study of morphogen gradients. A
perturbative treatment of a simple reaction-diffusion model
for gradient formation is used to calculate both the noise-
averaged shift of the system away from its robust determi-
nistic steady state and the system’s fluctuations about this
average. These analytical results are subsequently con-
firmed by a numerical simulation. Comparing our findings

(b*

FIG. 1. Morphogen concentration gradients ¢,(x) are plotted
from (2) for two different values of the production rate 7.
Where ¢, is greater than the threshold concentration ¢*, a cell
fate of type I is induced (unshaded). In contrast, ¢y < ¢*
induces a cell fate of type II (shaded). The process by which
the gradient is shaped is said to be robust to 7, because both
curves demarcate essentially the same location x* for the bound-
ary between cell types.
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to the steady-state solution of the reaction-diffusion model,
we find that deterministic robustness can, indeed, be com-
promised by noise, but only when the intensity of noise is
sufficiently high. Finally, we argue that models of robust
gradient formation that incorporate a more realistic num-
ber of components should be even more susceptible to the
effects of noise than the simple model investigated here.

We begin by considering a single morphogen of local
concentration ¢(x, ¢) that is produced at the origin at a
constant rate 7, and diffuses out to infinity along the
positive x axis with Fick’s constant D. The morphogen
accelerates its own rate of degradation such that it is
removed from the system at a local rate of f¢(x, £)?, which
gives the equation of motion

91 = Dot — f? + myd(x). (D

Experimental evidence suggests that this mechanism of
self-enhanced ligand degradation is a qualitatively correct
description of how the wingless gradient is established in
fruit flies [4].

When the gradient reaches a steady-state shape ¢, it
will divide space into two regions: one where the concen-
tration of morphogen is higher than some threshold value
¢* and a cell fate of type I is induced, and one where the
concentration is lower and a cell fate of type II is induced
(Fig. 1). The boundary between the two regions lies at the
coordinate x* that satisfies ¢o(x*) = ¢™.

The steady-state solution that satisfies 9,¢, = 0 is given

0 =2 = ESer 0@ ] @

where € = (12D%/fn,)'/3. The boundary coordinate is
therefore given by x* = ./6D/f¢p" — e = x*(0) — €. If
€ < x*(e), then dlogx*/dloge will be very small, mean-
ing that relatively large percentage changes in e will
introduce only minor percentage shifts in x*. Thus, as
long as € < x*(0), the location of a cell-type boundary
specified as in Fig. 1 will be robust to the concerted shifts
in 7, that might result from genetic or environmental
variation within a population of embryos [4].

The preceding analysis operated under the assumption
that the rate at which the morphogen is synthesized and
secreted is constant over time in a single embryo. We now
relax this assumption in order to study the consequences of
introducing time-dependent noise into the system. The first
step in doing this is to define new quantities ¢(x, 1) =
do(x) + 6d(x, 1) and n(r) = ng + S7(r). A rescaling of
space, time, noise, and concentration in the interest of
consolidating free parameters results in the new equation
of motion

12 S8¢ — 82+ 5nd(x).  (3)

9,0 = 326¢ — Gt er

We have computed the mean shift (5@ (x)) and variance
A = (5¢(x)*) — (8¢(x))>. [Here, (- - ) denotes averaging
over all realizations of the noise §7(z).] Since dimensional
analysis requires that these two quantities depend on €(7,),
they are a means to gauge the impact that noise has on the
robustness of the gradient to changes in 7). The noise itself
is taken to satisfy (6n(r)) =0 and (Sn(r)éxn(t)) =
2y8(t — '). A power-counting argument shows that the
effects of more realistic noise correlations should not alter
the behavior for large x.

The quantities of interest can be calculated using per-
turbation theory. The first step is to construct a Green’s
propagator, which is composed of the eigenfunctions 1} ) of
the linear operator —d2 + 12/(x + €)? in the right-hand
side of (3):

—iw+ A @)

G(xy, xp; ) = ]w dA
0

The eigenfunctions may be approximated as ,(x) =

Jix +€)/27, /2[\//—\(x + €)]. While terms proportional to
Bessel functions of the second kind are needed for exact-
ness when € # 0, their contribution should be small for the
soft modes of the system that contribute most strongly to
averages over the noise, particularly in the case of interest
where € is small compared with the size of the system.
The iterative solution to (3) obtained by repeated sub-
stitution for the nonlinear term can be expressed as a sum
over tree Feynman diagrams rooted at x, each edge corre-
sponding to G, each node to the nonlinear interaction, and
the end of each branch corresponding to an insertion of the
noise. Averaging over the noise then has the effect of
pairing these ends in all possible ways. The nth-order
contribution to A is represented in the inner box of
Fig. 2. The two lines that converge on x’ must originate
at vertices located at points x; and x,, which can be
assumed to be less than x’ for reasons that are explained
below. Integration over w and the propagator eigenvalue

FIG. 2. The Feynman diagram for a general, nth-order process,
with time increasing from left to right. n distinct fluctuation
events at the origin propagate through space and interact with
each other to produce a positive contribution to A at x’ (inner
box). The self-interaction of this variance summed over all
points x’ then induces a nonzero (8 ¢) at x (outer box).
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for G(x;, x') reveals that the nth-order diagram contains the integral

;1 fd/\(x’ + €)y/(x; + €)(x, + €)J7/2(\//_\[x1 + 6])J7/2(\/X[xl + e])17/2(\/X[x2 + e])K7/2(\/X[x’ +e€l). O

Assuming that x" + € > x; + € for all points x; that tem-
porally precede x’ in Fig. 2, the heavy damping from K5/,
permits the substitution J; /2(\//_\[x1 + €)1, /z(ﬁ[xQ +
€]) ~ A7/2. The subsequent integral over A in (5) comes
out the same regardless of the order in perturbation theory.
Thus, we obtain A ~ 1/(x')8.

The above result was based on the assumption that x’ is
always much larger than the spatial coordinates of vertices
located at earlier time coordinates. Obviously, when one
integrates over all possible vertex positions, one will be
forced to consider cases where x; > x’. However, free
fluctuations constantly relax towards 8¢ =0 as they
propagate through space, and their effects are clearly the
strongest if they interact nonlinearly prior to undergoing
most of this relaxation. Thus, by assuming that all inter-
actions contributing to a diagram occur before propagation
over any significant distance takes place, we ignore pro-
cesses that would have contributed only weakly to the final
answer.

With A in hand, we now proceed to the outer box of
Fig. 2 and calculate the average shift in ¢ using

(5(x)) = f AYAG)G(x, s @ = 0), ©6)

Since

G(x>x";0) =

Vxx! (x'\7/2
: (—) , %)
X
the leading term in (6) becomes (8¢ (x)) ~ 1/x3. It should
be noted, however, that the cubic power law is not a result
of the specific form of the fluctuations A as long as they fall
off sufficiently rapidly with x’. Rather, the observed decay
would be brought in as part of any computation of (6)
because of the cubic spatial dependence of G(x > x';0).
Thus, it seems likely that little was sacrificed in generality
by assuming a white spectrum for the noise.

The system defined in (1) and (3) was simulated in order
to test whether (6¢) and A would exhibit the predicted
power law behaviors. As Fig. 3 illustrates, the concurrence
of the data with the analytical calculations is essentially
exact, except near x = 8.8, where a boundary condition
requiring & ¢ to vanish artificially skews the curve towards
Zero.

We are now in the position to assess whether the gradient
remains robust to changes in the average production rate
(m) = m, in the presence of white noise of strength y.
Recall that the condition for robustness to 7 in the steady-
state case was € < x*(0). Now examining the noise-
averaged shape of the gradient, we find that

(= DL A

(x+e€? »

®)

where A(7g, v) is an unknown, positive amplitude that

\
increases in a monotonic, unbounded fashion with 7y

from the value of zero at y = 0. Comparing to (2), it is
apparent the impact of the noise at leading order is that it
drives up the effective value of €. This means that, although
our criterion for robustness may be met in the absence of
noise, there must be a y*(7,) for which y > y* implies
that 2e(n,) + A(y, n°) > x*(0). Thus, the robustness of
the system to changes in 7 is reduced in the presence of
noise, and can be eliminated altogether if the noise level is
sufficiently high.

It is also interesting to consider the effects that the
fluctuations might themselves have on the process of de-
velopment. If the embryo had an infinite amount of time to
sample the fluctuating level of morphogen at each point in
space, it could “measure” and respond to the gradient (¢)
with perfect precision. Instead, positional information
must be recovered from a morphogen gradient over the
course of some finite period T dictated by the timetable of
embryonic growth. A calculation similar to the one carried
out in (5) reveals that the variance measured at x during this
period will be less than A and asymptotically proportional
to T-'x7°. (The slower x~© decay of fluctuations results
from the fact that points more distant from the origin
receive information about the effective value of € more
slowly.) Thus, the precision of cell-type boundaries must
be limited approximately by Ax* ~ (x*)73/(¢’(x*)). This
uncertainty in the boundary position should grow mono-
tonically with y and depend only very weakly on x™. Thus,
regardless of where the boundary lies on average, a suffi-
ciently high noise strength could push the precision in x*
below tolerable levels.
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FIG. 3. The equation of motion (3) was solved numerically for
Ar=0.001, Ax=02,f=5,y=02,and D=10on0<x <
8.8. Boundary conditions were imposed such that 9,8¢|,.—¢ =
8¢$(8.8) = 0. Here, we plot the inverse cube root of the magni-
tude of the average shift in 6 ¢, along with the inverse eighth root
of the fluctuation of the shift about its average value (inset).
Regression analysis of the solid lines gave linear correlation
coefficients >0.998; the dotted lines represent regions where the
finite-size effect due to the boundary condition at x = 8.8
becomes noticeable.
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The above discussion focused on a reduced model of
morphogen gradient formation that involves only one
chemical species. In fact, even the simplest realizations
of self-enhanced ligand degradation in vivo involve inter-
mediary receptors and proteases that enable the morphogen
to regulate its own rate of degradation [4]. However, there
are at least two reasons to believe that this additional
sophistication should only magnify the effects we have
observed in the reduced model. First, this study has fo-
cused on a system in which the only source of noise was
localized at the single point in space at which the damping
of fluctuations was strongest. In contrast, more realistic
models may contain multiple sources of noise that extend
across the entire system. Second, in more complex path-
ways, it is possible for the concentration of one chemical
species to control the relaxation time of fluctuations in a
second species. Thus, a pathway that is robust to the
concentration of a component in the deterministic steady
state may exhibit fluctuations and an induced shift away
from the steady state that are not robust to this concentra-
tion. For example, we have recently shown that under
reasonable assumptions, the gradient shape established
by the BMP pathway studied in [3] should exhibit in-
creased variability when the ambient concentration of the
short gastrulation protein is reduced. This predicted varia-
bility is anecdotally confirmed by experiments carried out
in [9], but the issue still demands a more quantitative
investigation.

This study is, to our knowledge, the first to elucidate the
impact that time-varying stochasticity in gene expression
can have on the shaping of morphogen gradients. Using
both analytical and numerical techniques, we have shown
that noise can interfere with the putatively robust specifi-
cation of positional information by inducing a nonrobust
mean shift in the gradient away from its steady-state shape,
and can also cause fluctuations in the position of a cell fate
boundary. There is, furthermore, good reason to believe
that these effects should be more pronounced in models
more realistic than the simplified system considered here.

However, while it has been made clear in this work that
noise has potential significance, it remains a question for
experimenters whether fluctuations are large enough that
they can play a detectable role in the formation of mor-
phogen gradients. Yet even in the cases where noise turns
out to have little effect, there still remains the intriguing
possibility that specific mechanisms are responsible for
attenuating fluctuations in order to prevent them from
interfering substantially with the action of morphogens.
In either event, our findings should provide motivation for
an exciting new line of experimental inquiry that may
contribute to a richer understanding of the factors that
play a decisive role during embryonic development.
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