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Theory for an order-driven disruption of the liquid state in water
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Water is known to exhibit a number of peculiar physical properties because of the strong
orientational dependence of the intermolecular hydrogen bonding interactions that dominate its
liquid state. Recent full-atom simulations of water in a nanolayer between graphite plates submersed
in an aqueous medium have raised the possibility of a new addition to this list of peculiarities: they
show that application of a strong, uniform electric field normal to and between the plates can cause
a pronounced decrease in particle density, rather than the increase expected from electrostriction
theory for polarizable fluids [ Vaitheeswaran et al., J. Phys. Chem. B 70, 6629 (2005)]. However, in
seeming contradiction to this result, another study that simulated a range of similar systems has
reported a less surprising electrostrictive increase in particle density upon application of the field
[Bratko et al., J. Am. Chem. Soc. 129, 2504 (2007)]. In this work, we attempt to reconcile these
conflicting simulation phenomena using a statistical mechanical lattice liquid model of water in an
applied field. By solving the model using mean-field theory, we show that a field-induced transition
to a markedly lower-density phase such as that observed in recent simulations is possible within a
certain parameter regime, but that outside of this regime, the more conventional electrostrictive
result should be obtained. Upon modifying the model to treat the case of bulk water under constant
pressure in an applied field, we predict a density drop with rising field, and subsequently observe the
predicted behavior in our own molecular dynamics simulations of liquid water. Our findings lead us
to propose that the model considered here may be useful in a variety of contexts for describing the
trade-off between orientational ordering of water molecules and their participation in the liquid

phase. © 2008 American Institute of Physics. [DOI: 10.1063/1.2823129]

I. INTRODUCTION

Liquid water is held together by an extensive network of
relatively strong intermolecular interactions known as hydro-
gen bonds, which arise from the attraction between hydro-
gens and oxygens on adjacent molecules with suitable rela-
tive orientation.. Because hydrogen bonding is an
orientation-dependent interaction, water can behave very dif-
ferently than it does in bulk when severe confinement or
some other external potential substantially constrains the ro-
tational configurations available to the molecules of the
liquid.2 Exotic scenarios such as these arise frequently in
contexts ranging from namoengineeringﬁ’4 to macromolecular
assembly,s‘6 making the physics of ordered water a subject of
both basic and practical interest in a variety of research
fields.

The case of water in an applied electrostatic field pro-
vides a particularly rich setting for examining how the aque-
ous medium may be induced to organize itself. Water mol-
ecules possess electric dipole moments that experience
aligning torques in the presence of an electric field, and these
torques may find themselves at odds with the normal ten-
dency of the liquid to arrange its orientational degrees of
freedom to favor extensive hydrogen bonding. At the same
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time, the capacity of each molecule of water to lower its
energy by aligning its dipole with the local field produces a
thermodynamic drive (known as electrostriction) to pull
more molecules into regions where field is plresen'[.7_9 It is
therefore quite challenging to make an a priori judgment
about what the result will be when, for example, a nanolayer
of water between graphite plates immersed in a water bath is
subjected to a strong electric field normal to the plates.

In fact, different attempts to study such a system in
simulation have led to diametrically opposite outcomes.
Vaitheeswaran et al. used NPT molecular dynamics simula-
tions of plates immersed in a water box to test fields ranging
from 1 to8 V per nanometer for a plate separation of
roughly 1 nm, and observed an abrupt transition to approxi-
mately 50% lower particle density between the plates near
3 V/nm.'® This transition was characterized by a sharp spike
in the water’s compressibility, which exhibited a sustained
increase relative to bulk at field strengths above the transition
point. Water between the plates after the transition also was
highly polarized, with most molecular dipoles making a rela-
tively small angle with the applied field. Thus, there ap-
peared to be a field-induced, first-order-like transition from
the bulk liquid phase to an aligned phase with much lower
density. In contrast, Bratko and Luzar implemented grand
canonical Monte Carlo sampling of water in the region be-
tween plates of comparable separation and found for fields of
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both plate-normal and plate-parallel orientations ranging up
to 4 V/nm in strength that the electric field caused the par-
ticle density between the plates to increase.'!

In this study, we propose a grand canonical lattice liquid
model of water'” in the presence of an organizing external
field. By solving the model in the mean-field approximation,
we demonstrate that it provides a consistent explanation of
the results of both sets of simulations described above, which
most likely differ because they are carried out in effectively
distinct parameter regimes. Following this, we use our model
to examine in more detail the role played by the graphite
plates in helping to bring about the field-induced first-order
density transition described by the theory. Finally, we aug-
ment our model to treat the isobaric-isothermal ensemble,
and predict a similar density-field relationship for water in an
applied field. We subsequently validate this prediction with
our own molecular dynamics simulations of water at con-
stant temperature and pressure.

Il. MODEL

Our aim is to develop a statistical mechanical theory of
liquid water on a discrete lattice. The fundamental physical
assumption on which our model rests is that when neighbor-
ing water molecules become aligned with an applied electric
field, their attempts to form hydrogen bonds with each other
are frustrated by the loss of relative orientational freedom. It
is this field-induced frustration of normal liquid interactions
that underpins the phase transition that the model will enable
us to describe.

A. Bulk mean-field theory

We begin by considering a bulk medium composed of M
lattice sites, each with g neighbors, and assuming that each
site on the lattice may adopt one of three different states. The
first state is the e state, or “empty” state, which corresponds
to the volume element represented by the lattice site not
being occupied by a water molecule. The second state is the
a state, or the “aligned” state, which corresponds to the site
containing a water molecule with low orientational entropy
that keeps its dipole moment closely aligned with the applied
electric field. Finally, a site may be in an ¢ state, or “liquid”
state, which obtains when the site is occupied by a water
molecule that freely tumbles so as to most favorably hydro-
gen bond with its neighbors.

With the states for the system defined, the next step is to
construct a Hamiltonian that adequately reflects the physics
of the system we intend to describe. The starting point is to
assume that e states, which constitute the inert vacuum
against which other states are measured, do not contribute to
the energy in any way. Next, we assume that an € state forms
in our grand canonical ensemble with chemical potential w
<0 (since the solvation free energy of water in water is
exoergonic), and that it couples to neighboring ¢ states with
a bonding energy —e<<(0. The quantity e reflects the total
pairwise free energy of two neighboring molecules free to
tumble and favorably co-orient so as to hydrogen bond with
each other. We similarly require that the a state forms with
chemical potential u, but also contributes a favorable free
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energy —y=h+f, which is the sum of the enthalphy 4 <0 of
alignment with the applied field and the orientational free
energy cost f>0 from the reduction in entropy that accom-
panies alignment.

The crucial, final specification is that a states do not
couple to their neighbors on the lattice, either favorably or
unfavorably. This assumption is an idealization for the pur-
pose of analytical simplicity, and it is important to discuss its
justification. We reason that, although water molecules with
fixed orientation do, in fact, form hydrogen bonds with
neighboring water molecules, the free energy of this interac-
tion is necessarily less favorable than that between two €
state molecules, since a molecule must substantially reduce
its conformational entropy in order to hydrogen bond with a
neighboring molecule whose orientation is already fixed.
Thus, we treat the a-€ coupling as being negligible on the
assumption that defining it to be finite but small would not
lead to a qualitatively different outcome. Regarding the in-
teraction between adjacent a states, it is clearly the case that
parallel electric dipoles may either repel or attract each other
depending on whether they are stacked horizontally or verti-
cally. Thus, as a first approximation, our initial analysis as-
sumes that a states do not interact with each other, although
we will return to this issue later on.

In terms of the lattice fields sﬁ”) and sge), which are 1
when site i is in the a or € state, respectively, and O other-
wise, the Hamiltonian described above is

M MM
€
uN=H=2[ps+ (95145 25050, ()
i=1 i.j

where i and j are neighbors on the lattice. To probe the
thermodynamics of this model, we employ a mean-field
approxirnation13 and assume that the grand potential per lat-
tice site w may be written in terms of the single-site prob-
abilities for observing different lattice states, p,, p,, and py,

qge »
W=="pr= P~ (Lt Vpa+ > p,logp,. (2)
r=e,a{
Here, we have assumed that the energies w, €, u, and vy are
given in units of k3T, where T is the temperature and kp is
Boltmann’s constant.

Minimizing this potential with respect to the probabili-
ties on the constraint that p,+p,+p,=1 yields a self-
consistency relation for the quantity p,

P+

POy enrry g ®
It should be noted that, because € states are the only ones
that couple to their neighbors on the lattice, a solution to the
one-dimensional self-consistency problem for p, immedi-
ately determines p,=(1+e**7+e4*#)~! and p,=1-p,—p,.
In contrast, were the a states allowed to interact with neigh-
boring sites, the self-consistency problem would become a
significantly more unwieldy two-dimensional one.

A graphical solution to Eq. (3) is shown in Fig. 1. Since
the self-consistency relation was derived by extremizing the
grand potential, it is necessary in principle to plot w(p,) from
Eq. (2) in order to determine which intersection points are
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FIG. 1. (Color) Top row: Self-consistency plots are shown for p,, the probability of a site being in the liquid () state. The left and right intersection points
with the diagonal lines correspond to grand potential minima, while the central intersection is a local maximum, indicating the possibility of a first-order
transition. The total particle density p,+p, is also plotted. Bottom row: Grand potential contours are plotted for p, and p,, the probability of being aligned and
liquid, respectively. Shading is automatically scaled in order to make the minimum black, the maximum white, with 30 contours between and the upper half
of the box shaded to match the color value of p,=p,=0.5. At zero field (y=0) the stable global minium lies at low p, and high p,, which corresponds to the
liquid state (left column). As the field rises, the local minimum of an aligned vapor of lower density (p,=0, p,<1) deepens (center column), until, at high
field, it has become the global minimum (right column). In all plots, ©=-9.5 and ge=20.

local maxima and which are local minima, as well as which
local minimum corresponds to the global minimum. We
choose the parameters ¢, €, and u to have physically reason-
able magnitude [i.e., u~—10kzT (Ref. 14) and ge~20k,T
(Ref. 15)], and in order that at zero field (—y=/>0), a liquid
phase with low compressibility (Fig. 2) is stable and most
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FIG. 2. (Color) Density p,;+p, (top) and compressibility «; (bottom) are
plotted schematically for u=-9.5 and ge=20 as a function of the applied
field . As the critical field v, is reached, the density drops and the com-
pressibility spikes. After the transition, density rises precipitously, and com-
pressibility drops back down. Dotted lines indicate how the plots would
differ if repulsion between aligned dipoles kept the density from rising so
rapidly after the transition.

sites are in the € state (p,~1) (Fig. 1, left panel). Here
compressibility may be easily calculated from the mean-field
probabilities through its direct proportionality to the relative
fluctuation (n2)/(n)2—1,"> where n is the number of a or €
states in the system. When we introduce an applied field i
<0, however, the relative stability of the local grand poten-
tial minimum corresponding to liquid phase decreases com-
pared to the second local minimum near p,=0. Eventually, at
a critical field strength where the enthalpy favoring align-
ment becomes greater than the enthalpic gain a molecule can
realize by hydrogen bonding extensively with its neighbors
(h~ ge), the liquid state is destabilized, and the equilibrium
begins to shift discontinuously to the second local minimum
(Fig. 1, middle panel). This discontinuity in p, as a function
of h corresponds to a sharp spike in the compressibility at the
critical field (Fig. 2), above which the system enters a new
aligned phase. For the choice of parameters used for plotting
the figure, this phase has a lower density and higher com-
pressibility than the liquid state (Fig. 2). The system there-
fore is capable of exhibiting a first-order phase transition that
bears a striking resemblance to the one observed in previous
simulations.

It nevertheless should be acknowledged that this resem-
blance is not exact in every detail; whereas the transition
described in simulation was followed by a relatively flat de-
pendence of particle density on the external field in the high
field regime (Fig. 2, dotted curve), the solid curve shown in
Fig. 2 predicts a comparatively rapid rise in density as the
field ramps further past the transition point. One possible
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explanation for this discrepancy is our initial failure to ac-
count for the electrostatic interaction between the molecular
dipoles of adjacent water molecules. Vertically stacked par-
allel chains of electric dipoles attract each other, and hori-
zontally arranged sheets of them repel each other just as
strongly. For molecules in a water layer trapped between
plates, vertical neighbors are less common than horizontal
ones, with the result that the dipole-dipole interaction is ef-
fectively repulsive. Adding such a short-range repulsion to
the theory in a Bethe-type approximation13 would most
likely not only flatten out the post-transition density as a
function of field, but would also increase the likelihood of
observing a drop in density upon disruption of the liquid
state.

The transition may be characterized analytically in the
parameter regime we have chosen because the energy scales
involved are significantly larger than kzT. Because of this,
the system is equivalent to an Ising model'? (see Appendix)
well below its critical temperature that chooses which
ground state to be in by lowering its energy of interaction
with the applied field. The grand potential per site of the
liquid phase should be given by w,=—qge/2— u, while for the
aligned phase w,=-log[1+e**Y]. Setting these two quanti-
ties equal gives the critical field at which the first-order tran-
sition occurs, y,=log[e?¥**#—1]—u. The particle density
immediately after the transition follows simply as p,(y.)=1
_ e—qE/Z—p,'

Interestingly, it is clear from this result that both the
location of the transition point and the change in density that
accompanies the transition are potentially highly sensitive to
the quantity A=ge/2+ u. For large A, v,, and p,(y,) are
both relatively flat functions. However, for 0<<A <1, where
the balance between the chemical potential of the bath and
the binding energy of the liquid is comparatively fine, small
changes in € or u of order unity can turn a dramatic density
transition into a negligible one and can shift the transition
point vy, by several kgT.

Armed with this observation, we are now in the position
to suggest an explanation for the discrepancy between differ-
ent simulations of water layers that have either increased or
decreased their density upon application of a uniform electric
field. The two studies were conducted in different thermody-
namic ensembles, using different methods to calculate the
electrostatic interactions that lead to hydrogen bonding be-
tween the water molecules. Thus, it may be the case that the
two sets of simulations correspond to effective values for e
and u that differ by relatively small amounts that are never-
theless qualitatively significant with respect to the question
of whether a pronounced drop in density is observed at
ranges of field explored. Compounding these differences is
the fact that, in the study that observed an electrostrictive
increase in density, the graphite plates were not modeled as
hard repulsive surfaces, but rather as more physically realis-
tic ones that exerted weak attractive forces on the water oxy-
gens. Since it has already been established that this choice of
parameters converts the sharp density transition observed in
the hard repulsive case to a smoother, more moderate decline
in density,lo it seems even more reasonable that a drop in
density would not be observed at the relatively low fields
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FIG. 3. (Color) Grand potential @ is plotted as a function of a, which
measures the maximum value of p, for water trapped between hydrophobic
plates separated by a given number of lattice spacings d. On the left, the
plate separation L=5d is plotted, and on the right, the result for a narrower
confinement of L=3.5d is plotted. Curves are drawn for no field (y=0),
moderate field (y=9.5), and high field (y=13). Comparing the left and right
panels, it is apparent that increased confinement causes a=0 to become
more stable than a=1 at a lower value of y. Thus, narrowing of the plate
separation primes the water between the plates for a field-induced partial
evacuation.

considered in the Bratko study. That a moderate increase in
density like the one observed in those simulations is not
predicted by our model for the parameter regime in question
is clearly a result of our choosing to describe each lattice site
as being in one of three discrete states; in reality, one would
expect liquid water to be able to act as a dielectric and po-
larize and pack more tightly to some degree in response to an
applied field without substantially disrupting the hydrogen
bond network.

B. Hydrophobic plates

Up until this point, we have analyzed our model using a
zeroth-order mean-field approach that makes no distinction
between different sites on the lattice. As a result, we have
been unable to explicitly treat the role that the hydrophobic
plates bounding the nanolayer of water may play in bringing
about a phase transition. In fact, it is quite possible that these
plates are essential to the process. Although our initial mean-
field considerations seem to suggest that the ordering transi-
tion would be as easy to observe in bulk as in a nanoconfined
system, the reality is more complicated because of long-
ranged electrostatic interactions between molecular dipoles
that could potentially play a dominant role in a bulk setting.
In a water layer trapped between nanoseparated plates, the
longest range of intermolecular interaction is limited, to the
point where the nearest-neighbor approximation we employ
here is better justified. Moreover, because they are hydropho-
bic, the plates undoubtedly contribute to disrupting the liquid
state in the water layer even in the absence of field, and this
destabilization may help prime the system to be pushed over
the brink when the external field is turned on.

In order to assess what added effect confinement may
have on the phase transition of interest, we modify our mean-
field model so that the probabilities of a lattice site being in
the €, a, or e state are all functions of the vertical coordinate
z between the plates. Thus, for a stack of lattice sheets situ-
ated between plates of separation L, the contribution to the
energy of the system from €-¢ coupling is given by a sum
over the z coordinate, which we may approximate with an
integral if we treat p,(z) as a continuous function of space,
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FIG. 4. (Color) Top row: Self-consistency plots are shown for py, the liquid density. The left and right intersection points with the diagonal lines correspond
to free energy minima, while the central intersection is a local maximum, indicating the possibility of a first-order transition. The total particle density p is also
plotted. Bottom row: Gibbs’ free energy contours are plotted for p and p, the total and liquid density, respectively. Shading is automatically scaled so that the
minimum in the field is black, the maximum white, with 25 contours in between and the lower half of the box colored to match the value of 7—€/2. At zero
field (y=0) the stable global minimum lies at high p=p,= 1, which corresponds to the liquid state (left column). As the field rises, the local minimum of an
aligned vapor of lower density (p<1, p;=0) deepens (center column), until, at high field, it has become the global minimum (right column). In all plots,

7=0.16, the rough equivalent of 100 atm, and ge=20.

< L "
~E3 S ple+bpia) z—ef dz[pf(z)%p_(z)]'
2z=0 k=*1 0 2

(4)

As before, p,(z) and p,(z) are both completely determined by
the value of p,(z). Thus, defining €(z) =p,(z), we may write
the full expression for the grand potential of the system as

L "
w:Af dz[— GT —et’—(1-p,()u—p,0)y
0

+ € log € +p,(O)log p,(€) + p,(O)logp,(€) |, (5)

where A is the area of the plates.

To find the equilibrium configuration of the system, it is
necessary to minimize the grand potential functional with
respect to €(z) after choosing boundary conditions that re-
flect the hydrophobicity of the surface (i.e., €(0)=€¢(L)=0).
Rather than seek the full solution to this problem, which is
likely to be intractable, we instead solve it approximately by
asserting the ansatz €(z)=a sin[7z/L], where a is an unde-
termined parameter between O and 1. The rationale for as-
suming this form for ¢ is that the hydrophobicity of the
plates should lead to a local destabilization of the liquid state
near the plates that would be measured at zero field as a local

dewetting. By plugging our expression for € into Eq. (5), we
are able to find w, and the equilibrium value a=a,, that
minimizes w(a). Thus, through our determination of a,,, we
are able to assay whether or not a liquid phase is stable in the
region between the plates.

The grand potential as a function of « is plotted in Fig. 3
for three different values of the applied field and two differ-
ent plate separations. While the separations considered are
small enough (i.e., of order unity in the lattice spacing d) that
the continuum approximation used here is likely to be quan-
titatively invalid, our expectation is that the calculation will
still capture qualitative effects. For both plate configurations,
sufficiently high field destabilizes the liquid state in the sys-
tem and causes w(a=0) to be more negative than w(a=1)
(blue curves). However, a comparison between the two pan-
els demonstrates that, for a smaller separation between the
hydrophobic surfaces, the unaligned liquid becomes unstable
at a lower value of the applied field (orange curves). This
effect results from the lesser stability at zero field of the
liquid phase when it is more tightly confined between the
hydrophobic plates (red curves). Thus, the plates appear to
play a role in modulating the effective chemical potential of
the system by pushing liquid closer to the brink of disrup-
tion, and thereby increasing its sensitivity to destabilization
by the applied field.
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C. Isothermal-isobaric ensemble

Thus far, we have only considered the possibility of de-
stabilization of the liquid phase by a field in the grand ca-
nonical ensemble (GCE), where the system has the capacity
to adjust the number of particles it contains. There are, how-
ever, plausible physical arguments for being able to observe
a similar drop in density in a system composed of a fixed
number of water molecules enclosed in a volume that can
adjust itself against a constant external pressure. The under-
lying drive to a reduction of particle density in the GCE case
is that alignment of water molecules with the applied field
significantly reduces their effective attraction to their neigh-
bors, since hydrogen bonding becomes geometrically frus-
trated. In a liquid at constant pressure and temperature, a
reduction in the strength of the typical interparticle attraction
is bound to be accompanied by an expansion in volume be-
cause the molecules no longer realize the energetic gain at
higher density needed to balance the correlative entropic
cost. Thus, to the extent that an applied field frustrates inter-
molecular hydrogen bonding in water, we expect it should
push the liquid to lower density, and possibly even precipi-
tate a first-order transition to a nonliquid phase.

In order to formalize this scenario, we envision a system
with V lattice sites containing a total of N=<V particles under
pressure 7. For any given microstate, N, sites will be in the
€ state, N— N, wil be in the a state, and the rest will be empty
(the e state). If we define p,=N,/V and p=N/V, then the
Gibbs free energy for the system will be given by

N|  ept
=T Yp—pe) +pelog pe+(p—pe)

Xlog(p - pe) + (1 = p)log(1 - p) |. (6)
Applying the equilibrium conditions dG/dV=0 and
dG/dN,=0 yields the relationship

p=1-exp[- 7 - ep/2], (7)
and the transcendental equation
y—epg—log(p/p,—1)=0, (®)

which is solved graphically in Fig. 4. As expected, when
molecules reorient in response to the rising external field, the
liquid state becomes unstable and the system undergoes a
first-order transition to a lower-density, field-aligned vapor
phase.

As in the case of grand canonical ensemble, we can de-
rive the location of the transition point for our system by
assuming the energy scale set by the parameters in the
Hamiltonian is much larger than kg7. In this case, the free
energy of the liquid phase is G,=N(7—qe/2), and for the
aligned phase it is G,=N(7—y+log(1—exp[—])). Thus,
v.=qe€l2+log(1—-exp[—]), and the density after the transi-
tion is p=1—exp[—m]. For regimes in which <1 (which, at
room temperature and for physically reasonable choices of €
and g, corresponds to pressures below roughly 10* atm), we
may further simplify these expressions and obtain y.=ge/2
+log 7 and p=r.
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FIG. 5. (Color) Molecular dynamics trajectories of cubic water boxes ini-
tially 3 nm on a side were simulated in a uniform electric field using the
GROMACS software package for 1 ns of simulation time using a time step of
2 fs. Berendsen thermo/barostats kept the system at 298 K and constant
pressure (either 1 or 100 atm), respectively. A TIP4P water model was used
with the AMBER2003 force-field, and 1 nm cutoff electrostatics were em-
ployed. As the applied field ramps from O to 2 V/nm, the specific volume
increases slightly. Further increase in the field (4 V/nm) eventually leads to
marginal destabilization of the liquid phase, which can be rescued by an
increase in pressure from 1 to 100 atm. At high field (6 V/nm), the system
immediately expands to lower density (arrow). Thus, the applied field drives
a first-order transition from a high density liquid phase to a lower density
aligned phase.

Intrigued by the prediction that an applied electric field
might induce a pronounced drop in density for a fixed num-
ber of water molecules at constant pressure and temperature,
we performed molecular dynamics simulations to see if we
could observe such a transition in silico. Using the GROMACS
software package, we ran 1 ns trajectories for initially 3 nm
periodic cubes of 878 TIP4P water molecules at 298 K in
different uniform external electric fields and at different pres-
sures. The electrostatic interaction between molecules was
cut off at a | nm range in order to isolate the issue of hydro-
gen bonding and avoid interference from long-range interac-
tions between distant dipoles that might complicate the out-
come outside of the nanoscale regime. The volume of the
box for each field and pressure is plotted in Fig. 5 as a
function of time. For low field of 2 V/nm, a moderate ex-
pansion takes place, indicating that the effective attraction
between neighboring molecules has already become moder-
ately reduced as polarization of the liquid begins to compete
with hydrogen bonding (blue trace). At a field of 4 V/nm,
the polarized vapor phase is marginally more stable than the
liquid, and the kinetics of the transition from the starting
local free energy minimum to the global one are resultingly
slow enough that the expansion takes place only after
roughly 500 ps (yellow trace). Consistent with our expecta-
tion from the expression we have derived for v,, increasing
the pressure on the system at the same applied field restores
the stability of the liquid state by shifting the critical field
higher. Finally, at a high field of 6 V/nm, the liquid state
dissipates so rapidly that the volume of the system is in free
runaway for the entire trajectory (orange trace). Thus, the
applied electric field is evidently capable of driving a first-
order disruption of the liquid phase very much like the one
predicted by mean-field theory.
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lll. DISCUSSION

The effects of hydrophobicity2 and electrostatics'® on the
organization of aqueous solvent have separately received ex-
tensive attention from analytical theorists, yet comparatively
few attempts have been made to use theory to address the
solvation physics of both charged and nonpolar surfaces
within a single framework.'"'® Ironically, this outcome
might be due at least in part to the success past theories have
had within their own domains: a model that too effectively
understands the particularities of how liquid water restruc-
tures itself in a purely hydrophobic context may lack the
flexibility to accommodate a mixed scenario in which elec-
tric fields make qualitatively new and different demands on
the hydrogen bond network. The importance of developing
theoretical tools for treating such mixed scenarios is under-
lined by growing evidence from simulation that hydropho-
bicity and charge interact complexly when they share the
same solvent environment.”'***

In this study, our strategy has been to describe both hy-
drophobic and electrostatic effects so simply that the two
phenomena can be captured within a single analytical for-
malism. The danger of this approach is obviously that we
may, by simplifying matters excessively, ignore details that
are crucial to the phenomena of interest. Whether or not we
have fallen into this trap is an empirical question, which we
sought to answer here by comparing the predictions of our
theory to the results of atomistic simulations.

We began by abstracting the internal configurations of
water into three different states for each molecule-sized site
on a lattice. The liquid (€) state was made to correspond to a
freely tumbling molecule forming hydrogen bonds with its
liquid neighbors, the aligned (a) state to a molecule whose
energetically favorable fixed dipole orientation made it less
able to interact attractively with nearby sites, and the empty
(e) state to a small volume in space not occupied by a mol-
ecule. The fundamental assumption that allowed us to con-
struct a physically reasonable Hamiltonian for this system
was that the choice between participation in the liquid phase
and alignment with the external field was energetically frus-
trated because of the orientational sensitivity of hydrogen
bonds.

We first solved our theory for a grand canonical bulk
medium in the mean-field approximation, and showed that as
the strength of the applied field 7y passes through a critical
value v,, the system undergoes a first-order phase transition
from an incompressible liquid state to a compressible aligned
state whose initial density after the transition depends sensi-
tively on the chemical potential of the bath. We thus were
able to describe a transition to lower density strikingly simi-
lar to the one reported by Vaitheeswaran et al. in their study
of water in a uniform field, while also possessing the means
to suggest why a similar study performed by Bratko and
Luzar recorded no field-induced density decrease: it is rea-
sonable to hypothesize that the two simulations were effec-
tively operating at slightly different chemical potentials and
€-€ couplings. At the same time, our theory predicted a more
rapid electrostrictive increase in density with the field above
the transition than was observed in the Vaitheeswaran study.
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This is undoubtedly a quantitative, and not a qualitative, dis-
agreement; it must be the case that, for high enough fields,
aligned water molecules are pulled back between the plates
by electrostriction, and the density resultantly increases. To
the extent that Vatheeswaran et al. did not observe this den-
sity rebound to occur as rapidly after the transition as our
theory would predict, we propose that this discrepancy arises
because we did not include a term in our Hamiltonian ac-
counting for the electrostatic repulsion between horizontally
arrayed coaligned electric dipoles that would tend to drive
the aligned vapor to lower density.

Having demonstrated the efficacy of our theory in de-
scribing a phenomenon observed previously in simulation,
we next modified the model to make it spatially dependent,
thus enabling us to examine in closer detail the interplay
between confinement of water in a hydrophobic environment
and the alignment of the water molecules with an external
field. We found that the degree of confinement enhanced the
liquid’s sensitivity to destabilization by the field. In addition,
the model also predicts that, before any field-induced transi-
tion takes place, the increase in applied field will cause a
shift in the equilbrium between a and e states that should be
most noticeable at the plate surface, where p,=0 and p,
+p, is therefore maximized. It is worth noting that such a
field-induced wetting at the plate surface was observed in the
study of Bratko and Luzar.

Perhaps the most compelling demonstration of the utility
of our model, however, was that we were able to retool it for
use in a different thermodynamic ensemble. There, it pre-
dicted a similar, but distinct, first-order density drop in the
presence of an applied field. After characterizing this phe-
nomenon analytically, we showed that it occurs in molecular
dynamics simulations in accordance with our expectations. It
should be stressed that this result could not have been pre-
dicted merely from the equivalence of thermodynamic en-
sembles. As the field rises at constant chemical potential, the
pressure of the system will not, in general, remain constant.
To see this, we recall that the grand potential per site ® in
GCE is, in fact, equal to the pressure. Thus, to whatever
extent the grand potential varies with 7, the system cannot be
considered isobaric. However, both the grand canonical and
isobaric transitions described by our model originate from
the same physics: in each case, a field-driven reduction in the
conformational entropy of water molecules reduces their at-
traction to their neighbors, with the result that the liquid state
is destabilized.

The case of an aqueous medium in a uniform electric
field provides a rich setting in which to examine the statisti-
cal physics of liquid water in simulation, and yet there are
several reasons to be pessimistic about the eventual experi-
mental observation of a density transition like the one we
have considered in this study. In the bulk regime, it is likely
that the long range of the electrostatic interaction would sig-
nificantly complicate the forces acting on the molecules in
the liquid, as evidenced by the fact that when we perform
simulations of water in an applied field using a particle mesh
Ewald electrostatics method that accounts for long-range ef-
fects, the system contracts instead of expanding (data not
shown). In the nanoregime, it is questionable whether suffi-
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ciently uniform fields can be generated on the relevant length
scales, making it likely that any charged surface involved
would strongly bind the waters closest to it and thereby
qualitatively alter the solvent organization relative to what it
would be in a perfectly uniform field. It is furthermore ques-
tionable whether results of simulations carried out at such
high electric field strengths can be trusted when they are
performed wusing a nonpolarizable, nonionizable water
model.

IV. CONCLUSIONS

With all of the above caveats in mind, we nevertheless
would argue that the simulation phenomenon examined in
this work has proved to be an excellent testing ground for
our analytical theory for the ordering and depletion of water
in the presence of hydrophobic surfaces and electric fields.
Despite being formally quite simple (and therefore quite
tractable), our model has succeeded in capturing diverse as-
pects of a class of phase transitions by describing the choice
water molecules must make between orientational ordering
and participation in the liquid phase. Water undoubtedly
faces this choice in a wide variety of contexts ranging from
structural biology to nanofluidics. Thus, in future work, we
look forward to applying different variations on the theoret-
ical framework laid out here to understand the ordering of
water inside macromolecular assemblies and the in vivo fold-
ing of confined proteins.
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APPENDIX: EQUIVALENCE TO AN ISING MODEL

The Hamiltonian presented in Eq. (1) describes a lattice
gas whose nonempty sites can be in one of two states: an ¢
state that couples to neighboring sites or an a state that does
not. However, it is formally useful to observe instead that
both the a and e states do not interact with their neighbors,
and may therefore be thought of as the internal states of a
two-state vacuum that reaches its own thermodynamic equi-
librium, with free energy —log(l+exp[y+u]). Thus, sum-
ming over e and a states in the full partition function for the
system, we obtain an effective Hamiltonian for a single-
component lattice gas,
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MN = H opp= (= log(1 +exply+ u]))
M MM
€
XE sge) + 5 2 sl({)sﬁ-e).
i=1 ij )

(A1)

The system is therefore exactly equivalent to an Ising
model'? in an external field that depends nonlinearly on the
applied electric field described by 7. Since we assume the
liquid phase to be stable for y=0, we know we are below the
critical temperature for the system and that there should
therefore be a first-order transition between liquid and
vacuum phases for a critical value of y.B Moreover, it is
clear that the transition point between the liquid and vacuum
phases should be located where the applied field in the Ising
description changes sign, since it is at this point that the
symmetry between spin “up” and “down” is broken. Thus,

Yve=log[e?* #~1]-p.
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