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Abstract: Various studies suggest that the hydrophobic effect plays a major role in driving the
folding of proteins. In the past, however, it has been challenging to translate this understanding

into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a pro-

tein shapes functionally important features of its tertiary structure. Here, we extend and apply
such a phenomenological theory of the sequence-structure relationship in globular protein

domains, which had previously been applied to the study of allosteric motion. In an effort to opti-

mize parameters for the model, we first analyze the patterns of backbone burial found in single-
domain crystal structures, and discover that classic hydrophobicity scales derived from bulk phys-

icochemical properties of amino acids are already nearly optimal for prediction of burial using the

model. Subsequently, we apply the model to studying structural fluctuations in proteins and estab-
lish a means of identifying ligand-binding and protein–protein interaction sites using this

approach.

Keywords: hydrophobicity scale; protein structure; conformational fluctuations; ligand-binding sites;

mutations

Introduction

Since the experiments of Anfinsen,1 the field of

structural biology has been motivated by the idea

that the shape of a protein is completely determined

by its sequence. Increasingly, however, it has been

assumed that this mapping from sequence to struc-

ture is affected by such a diverse combination of

physical interactions that a detailed simulation

framework must be necessary to make accurate pre-

dictions about real proteins. Advances in hardware

and simulation methods have led to various break-

throughs in the computer simulation of protein fold-

ing with all-atom resolution: the massive

parallelization of trajectories for heavy sampling,2

the optimization of supercomputing on the millisec-

ond timescale,3 and the improvement of algorithms

for searching the energy landscapes of macromole-

cules have brought many structure-prediction and

design goals within reach.4

However, even considering the success of such

computational methods in shedding new light on

macromolecular structure and function, their high-

computational cost2,3 and dependence on numerous

modeling parameters raise the possibility that com-

plementary insights might still be gained using a

more theoretically and computationally simple

approach. Such a method would potentially have at

least two advantages: that on a fixed computational

budget it could be applied to a much larger corpus of

protein sequences or used to sample a wider diver-

sity of low-energy structures; and, that the small

number of modelling assumptions would make it

easier to determine where the model is expected to

succeed as well as where it might fail.

In the search for a simple physical principle to

incorporate into the assumptions of such a model,

the hydrophobic effect is a highly attractive choice.

Various studies suggest that the hydrophobic effect

plays a major role in the folding of proteins.5–7

However, although the hydrophobic effect is well
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understood at the level of individual amino acids—

nonpolar amino acid residues tend to be buried in

the core of the protein, and the polar residues are

more likely to be on the surface—a quantitative

theory of how the hydrophobic effect impacts struc-

ture as a whole in real globular proteins is difficult

to construct. The lattice HP models, where a protein

is represented as a sequence of nonpolar (H) and

polar (P) residues with attractive interaction

between H residues, quite often do not give unique

native structures, so that the predictions of these

models cannot be translated to real protein struc-

tures.8,9 Hydrophobicity profiles, which are con-

structed by averaging sequence hydrophobicity, are

known to correlate reasonably well with the burial

of amino acid residues in globular proteins.10,11

However, the methods that use hydrophobicity pro-

files to predict burial generally do not include non-

trivial effects of the polypeptide chain and do not

account for the limited space in the core of a protein

domain, which limits application of these methods.

Previously, we introduced a model of protein

folding, termed here the “burial mode model,” that

considers the hydrophobic effect, steric repulsion,

and the polymeric constraints of the protein back-

bone to be the driving forces of protein struc-

ture.12 Using only the amino acid sequence of a

protein, this model allows one to compute not only

the minimum energy conformational state of a

protein but also an ensemble of low-energy excited

states. Knowledge of these states has in turn been

demonstrated to be useful for studying coupled

motion of different parts of a protein in allosteric

motion.

For a 100–300 residue protein, it takes less

than a second to use the burial mode model to com-

pute tertiary structural information on a single

CPU. Thus, it might eventually be appealing to

apply the model to studying the large collections of

sequence homologs which became available with

high-throughput genomic sequencing. However,

before doing so one must clearly understand the

model’s domain of applicability, and which input

parameters make it most successful in capturing the

structural physics of protein domains.

In this study, we first examine whether our

approach can be improved by choosing a better set

of parameters. To accomplish this, we undertake to

compute a new amino acid hydrophobicity scale from

a large set of known protein structures, and compare

this performance of this scale to those of known

hydropathy scales. Having identified a suitable set

of parameters, we then undertake to explore the

confounding effects of interdomain interactions on

the model’s ability to predict burial in protein mono-

mers. By doing so, we discover a new application for

the model in the analysis of conformational fluctua-

tions related to ligand-binding and mutation.

Results

Burial mode model
In the burial mode model, a globular protein domain

is represented as a linear chain of N residues which

are indexed by the number s and have position ~rðsÞ
5½xðsÞ; yðsÞ; zðsÞ� relative to the center of mass of the

globule (Fig. 1). The polymeric bonds and the hydro-

phobic effect are incorporated into the system

energy

E5
XN21

s51

jj~rðs11Þ2~rðsÞj21
XN

s51

uðsÞj~rðsÞj2; (1)

The bond stiffness j determines the strength of

“harmonic spring-like” attraction between adjacent

monomers along the chain, which sets the overall

elastic extensibility of the polymer. The relative

hydropathy uðsÞ reflects the tendency of each differ-

ent amino acid in the chain to be exposed on the

globule’s surface or buried in its core, and is

obtained by converting amino acid sequence into

numbers using the standard Kyte-Doolittle (KD)

hydrophobicity scale.13 It should be noted that quad-

ratic form of the hydrophobic contribution to the

energy was chosen for two reasons: first, it allows

the model to be analytically tractable; second, it has

a physical intuition that force acting on the residue

near the surface is larger than in the core because

on the surface the amino acid is more likely to have

larger area exposed to the solvent. The steric repul-

sion between different parts of a chain is taken into

account as a global constraint on the ratio a of the

gyration radius squared to the maximum distance to

the center of mass squared R2

R2
g5

1

N

XN

s51

j~rðsÞj25aR2: (2)

The goal of this constraint is to prevent residues

from collapsing into the center of the globule and,

thus, to account for the limited space in the packed

globular core.

To compute the lowest energy conformation of

the protein one should minimize the system energy

(1) subject to constraint (2). As shown in previous

published work, this procedure can be reduced to an

exactly solvable linear programming problem.12 The

optimized outcome of the linear program is given in

the form of an energy-minimizing “burial trace,”

that is, the squared distance j~rðsÞj2 from each resi-

due to the center of mass.

To quantify the performance of the model on a

given protein, one may compute Pearson’s correla-

tion coefficient (PCC) between the burial trace com-

puted from the sequence using the model and the

burial trace generated from the known structure of

388 PROTEINSCIENCE.ORG Conformational Motion in Globular Proteins



the protein using coordinates of Ca atoms. (Note: To

compute burial traces one can also use coordinates

of Cb atoms or side chain centroids but this does not

change burial traces significantly.) Examples of pro-

teins for which the model gives different PCC values

are shown in Figure 1(B). As one can see from this

figure, for the proteins with high PCC (>0:4) the

resemblance between burial traces is striking,

whereas for the proteins with low PCC (<0:1) the

model correctly predicts only positions of a few local

extrema of the burial trace.

In globular protein domains, burial traces show

which parts of the protein are buried in the core and

which parts are exposed to water. In this regard,

burial traces are similar to hydrophobicity profiles

or window-averaged sequence hydrophobicities uðsÞ,
which are widely used to find out information about

the secondary and the tertiary structure of proteins

from their sequences.11,14 However, unlike hydropho-

bicity profiles, which do not contain any explicit

information about conformational changes, the bur-

ial mode model allows one to compute the ensemble

of burial traces for low-energy excited states of the

chain and, thus, provides a framework for studying

conformational fluctuations in proteins. Previously,

this framework has been successfully used to

explain allosteric motion in a panel of test proteins

for which the PCC between the burial traces from

the sequence and structure was greater than 0.4.12

The mapping of the sequence-structure relation-

ship that is effected in the burial mode model simpli-

fies, and, thus, accelerates the calculation so that it

becomes an attractive tool for studying large collec-

tions of proteins. However, to use the model as a

reliable method for analysis of conformational fluc-

tuations one should identify the set of physical

Figure 1. Basic assumptions of the burial mode model. (A) The protein backbone is represented as a linear chain (red solid

line) with residues indexed by the number s and that have position ~rðsÞ relative to the center of the globule. The black solid line

shows the maximum size of the globule, while the black dashed line shows the radius of gyration Rg: The hydropathy of each

residue uðsÞ is determined by the type of the residue. Neighboring residues are connected by harmonic springs of stiffness j.

Blue and red residues represent hydrophilic and hydrophobic amino acids, respectively. The plot in the bottom right corner

shows contribution of different residues to the system energy as a function of the distance to the center of the globule; and (B)

Burial traces computed using the model (blue lines) and from the crystal structures (red lines) of sperm whale myoglobin (1BZP)

and sialoadhesin (1OD7). The PCC between the model and the structure is 0.6 for myoglobin and 20.1 for sioloadhesin.
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parameters that makes the model applicable to the

broadest set of proteins. Thus, motivated by the pre-

vious successes of the model in explaining allosteric

motion for the proteins with high PCC, we

attempted to improve the model’s power to predict

burial traces by optimizing its input parameters.

Parameter optimization
There are 21 independent parameters in the burial

mode model: the bond stiffness (j), the ratio of the

squared gyration radius to the squared maximum

radius of the protein (a), and 19 relative hydropho-

bicities of amino acid residues. However, not all

parameters can be changed given the model’s

assumptions. First of all, the bond stiffness j fixes

the unit of length, and must be chosen so that corre-

sponding mean-square distance between neighboring

Ca atoms is equal to one; the parameter a ranges

from 0.4 to 0.6 in real proteins and is set to 3/5,

which is the value that would hold for a globular

protein that was spherical and had uniform density.

The maximum radius of the protein, meanwhile, is

estimated from the number of monomers in the

chain, and is given by R5ð3N=4pq0Þ1=3; where q0 is

the density of monomers estimated from the crystal

structure of the TIM barrel fold (PDB ID 2VXN).

Thus, it is the amino acid hydrophobicity scale that

offers some remaining parametric flexibility and

could perhaps be optimized to improve the model’s

burial trace prediction.

We first investigated, how the burial mode mod-

el’s performance changes when we use different

standard hydrophobicity scales. Based on the meth-

ods by which they were developed, hydrophobicity

scales can be divided into two groups: experimental

scales, which are based on the measurements of the

free energy of solvation of single amino acids or

short peptides in water and ethanol13,15,16 and

numerical scales, which are derived from the parti-

tion of amino acid residues between the core and the

surface in proteins with known three-dimensional

(3D) structures.5,17 In our previous study, the rela-

tive hydrophobicities of amino acid residues were

taken from the KD scale and standardized so that

the energy change associated with transfer of gluta-

mine from surface to the core of the globule is equal

to 0:5 kBT. To compare the performance of the model

with different hydrophobicity scales, we normalized

all scales so that the difference between the maxi-

mum and the minimum hydrophobicities was the

same as in the KD scale. Table I shows the mean

and the variance of the distributions of PCC for dif-

ferent classes of proteins from the structural classifi-

cation of proteins (SCOP) database.18 Interestingly,

despite the different origins of the hydrophobicity

scales, none of the scales significantly altered the

performance of the model on this large set of pro-

teins (SCOP class).

Next, we did a brute-force search for a better

hydrophobicity scale. For large groups of proteins

(SCOP classes/folds), it is computationally costly to

fit burial traces using a 20-letter amino acid alpha-

bet, so we elected to use a reduced-size amino acid

alphabet for these searches. We first split amino

acids into four groups according to their hydropho-

bicity indices in the KD scale: (R, K, D, E, Q, N, H),

(P, Y, W, S, T, G), (A, M, C, F), and (L, V, I). Because

this is a somewhat arbitrary way to split amino

acids into groups, as a control we also divided amino

acids into random groups. Then, we generated a 4D

rectangular grid with 10 nodes along each axis. The

range of hydrophobicity indices was set between 29

and 9—twice the minimum and maximum values of

KD scale, respectively. In the case, when amino

acids were divided into groups at random, we found

that the distributions of PCC for a-helical proteins

were always broad (st. dev. � 0:2) and their mean

was never greater than 0.2 (the data are shown in

Supporting Information); whereas when amino acids

were grouped according to the KD scale, the mean

of the distribution of PCC never exceeded 0.3 and

the standard deviation was about 0.2. It should be

noted that out of 104 different hydrophobicity scales,

we examined only 2% had the mean of the distribu-

tion of PCC higher than 0.25, the mean PCC for the

KD scale. Furthermore, the hydrophobicity scales

that provided high values of the mean PCC were in

good agreement with the KD scale (Supporting

Information Fig. S2). Taking into account the data

in Table I and the results of the exhaustive search,

one can conclude that one cannot achieve a signifi-

cantly better performance for the model on large

Table I. Comparison of the Model Performance with Different Hydrophobicity Scales for Different Classes of Pro-
teins from the SCOP Database

Hydrophobicity scale

Protein class

a b a1b a=b

Kyte-Doolittle 0:2560:22 0:2260:18 0:2560:18 0:2360:20
Wimley–White 0:2460:23 0:2160:19 0:2160:18 0:2160:19
Janin 0:2260:23 0:1860:19 0:2360:18 0:2060:19

Each column shows the mean and the standard deviation of the distributions of PCC between the burial traces computed
from sequences using different hydrophobicity scales and the burial traces extracted from protein structures for a given
SCOP class.
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groups of proteins using four-letter hydrophobicity

scales.

To investigate if the model’s power to predict

burial traces can be improved with a 20-letter amino

acid alphabet, we developed a method to derive a

hydrophobicity scale from real protein structures,

using physical assumptions in line with those of the

model. In particular, we noted that any two amino

acids of any two given types in adjacent positions on

a protein chain are forced to “live” in nearly identi-

cal environments. Because of this, one might sup-

pose that their relative position in space with

respect to the center of the protein globule in a crys-

tal structure could provide an all-things-equal com-

parison of the tendencies of each amino acid to be

buried in the globular core. Put another way, a rela-

tively greater tendency of one amino acid in such a

pair to be buried might be indicative of a relatively

greater hydrophobicity.

To pursue this idea, we treated a large collection

of proteins with known 3D structures as an ensem-

ble of amino acid pairs, in which the relative burial

of neighboring amino acids is determined only by

their relative hydrophobicity. We examined the dis-

tribution of amino acid positions inside globular pro-

tein domains with unique sequences and constructed

a matrix Mij, each element of which was defined to

be the number of times that a residue of type i is

further from the center of the globule than residue

of type j, given that these residues are the nearest

neighbors on a chain (Fig. 2). By positing that the

probability of amino acid of type i being closer to the

center of the globule than amino acid of type j is

given by a Boltzmann weight, we find that the rela-

tive hydrophobicity Duij of these amino acids is

given by

Duij5ui2uj / ln
Mij

Mji
:

Repeating this procedure for every pair of amino

acids provides 190 relative hydrophobicities Duij.

Thus, to compute 19 hydrophobicity indices ui of sin-

gle amino acids we did a least squares optimization.

Figure 2(B) shows the matrix of relative positions of

amino acid residues Mij and the hydrophobicity indi-

ces ui computed for a set of a-helical protein

domains with unique sequences of length between

100 and 300 a.a. from the SCOP database (970, in

total). To compute this matrix, we used only the resi-

dues that are far from the center of a domain

(j~rðsÞj2 > 0:5R2). Strikingly, this new hydrophobicity

scale (called “a-rpm”) that we computed from burial

information in real crystal structures turned out to

agree quite well with the both the KD scale and

with the Wimley–White (WW) scale [Fig. 2(B)].

Thus, by devising a new procedure to quantify the

empirical relative statistical force on adjacent amino

acids on a protein chain, we seem to have somewhat

surprisingly discovered that classic hydrophobicity

scales determined decades ago from bulk physico-

chemical measurements on amino acids already con-

stitute a nearly optimal model of how the

hydrophobic effect drives burial trends of adjacent

amino acids.

To confirm this, we tested how the model works

with the new hydrophobicity scale. As one can see

from Figure 2(C), the new parameters only slightly

improve performance on a large set of proteins com-

pared to the KD scale—roughly one quarter of all

domains have PCC greater than 0.4. This finding,

along with the results of our earlier searches of

parameter space, suggests that there is no hydro-

phobicity scale that works significantly better than

the KD scale, and there will always be many pro-

teins whose structural physics cannot be captured

by this simple model. Therefore, we sought next to

understand better what other factors might limit the

model’s domain of applicability.

Sequence diversity in globins
In search of systematic blind-spots for the burial

mode approach, we elected to look at a specific group

of similar proteins for which the model’s perform-

ance showed a wide range of outcomes. The ration-

ale in taking this approach was to reduce the

number of sequence and structural differences

among the proteins being compared, so that it would

be easier to correlate the remaining differences in

these factors with resulting divergences in predicted

burial trace.

An ideal group to consider for this purpose was

the SCOP family of globins (SCOP ID a.1.1.2). The

proteins in this family consist of eight a-helices

forming a compact globule, which is appealing

because the burial mode model does not account for

nonlocal hydrogen bonding that is required for the

formation of b-sheets. In light of the exceptionally

good performance of the model in the case of myoglo-

bin (PCC 5 0.56), we at first expected that the calcu-

lation should work just as well for all globins.

However, examining more closely the full distribu-

tion of PCC for nonredundant proteins in this fam-

ily, we found that the mean PCC is only 0.40 and

there are three separate peaks. Because the family

of globins consists of two protein domains: myoglobin

(a monomer) and hemoglobin (a heterotetramer), we

decided to check if the peaks in the distribution of

PCC corresponded to these proteins. As one can see

from Figure 3(A), we, indeed, found that the model

predicts burial traces significantly better for single

domain myoglobins than for their multidomain

hemoglobin cousins. For both chains of hemoglobin,

Figure 3(B) shows that the model mistakenly pre-

dicts that the region 110–130, which corresponds to

an interdomain interface in the tetramer, is buried.
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Figure 2. Extracting a model hydrophobicity scale from a set of proteins with known structures. (A) For a given protein one can

compute the burial trace (right panel) corresponding to its 3D structure (left panel). Then, one can count how many times a residue

of type i [leucine (L) in the figure] is closer to the center of the globule than residue of type j [lysine (K) in the figure] given that

they are the nearest neighbors on the chain, (B) Repeating the procedure described earlier for all proteins from the set, one can

compute the matrix of relative positions Mij (left panel). On the right, comparison of the hydrophobicity scale (a-rpm) calculated

from the matrix of relative positions Mij with KD and WW hydrophobicity scales. The matrix Mij was constructed using a domains

with unique sequences of length between 100 and 300 a.a. from the SCOP database (970, in total). To compute, this matrix we

used only the residues that are far from the center of a domain (j~rðsÞj2 > 0:5R2), and (C) Distribution of PCC between the burial

traces predicted by the model using KD and a-rpm scales and the burial traces computed from the crystal structures for a-helical

and b-stranded proteins from SCOP.
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These results suggested to us that interdomain

interaction, which is not included in the model,

might change the amino acid propensity to burial by

allowing hydrophobic residues to be a part of inter-

domain interfaces on the surfaces of single domains.

To account for interdomain interactions in

hemoglobin we introduced a perturbation to the

original burial mode model. In particular, we gener-

ated ensembles of burial traces where each residue

of the chain was successively pinned to the surface

of the globule by setting its hydrophobicity index to

a large negative number. The PCC between these

burial traces and the burial traces computed from

the structures of a and b chains of hemoglobin as a

function of pinning position is shown in Figure 3(C).

The idea behind this approach was that pinning the

hydrophobic residues that are parts of interdomain

interfaces to the surface would push a protein into

the correct shape by changing the amount of room

in the protein core, and as one can see from Figure

3(C), the model indeed predicted the burial traces

better when regions corresponding to interdomain

interfaces (residues 35–40, 110–130, and C-termi-

nus) were forced to be on the surface. However, the

highest PCC was achieved when residues 75–85

were pinned to the surface.

To understand why pinning this region, which is

not a part of interdomain interface, improves the

performance of the model, we compared the hydro-

phobicity profiles of myoglobin and hemoglobin [Fig.

3(D)]. As one can see from the hydrophobicity pro-

files, the regions of hemoglobin corresponding to

interdomain interfaces are more hydrophobic than

the same regions in myoglobin, but the largest dif-

ferences in hydrophobicity occur in regions 62–72

and 75–85. The first region is more hydrophobic in

Figure 3. Interdomain interaction in hemoglobin. (A) Distribution of PCC between the burial traces predicted from the sequence

using the KD scale and the burial traces computed from the crystal structures for the family of globins (SCOP ID a.1.1.2), (B)

Burial traces of a and b chains of hemoglobin (1Y4V) computed from crystal structures (black lines) and using the model (red

and green lines). Gray bars correspond to interdomain contacts, which were determined by the distance between Ca atoms

with the threshold 6.5 Å, (C) PCC between the burial traces extracted from crystal structures of a and b chains of hemoglobin

(1Y4V) and the burial traces computed using the model when one of the residues is pinned to the surface of the globule. Black

solid thin lines correspond to the same procedure for the random sequence. The dashed horizontal lines correspond to PCC

without pinning (0.28 for a-chain and 0.10 for b-chain), whereas black solid lines correspond to the random sequence, and (D)

Hydrophobicity profiles of myoglobin (blue line) and hemoglobin (red and green lines) calculated using a sliding window of 10

residues.
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myoglobin and is in close contact with a heme mole-

cule,19 whereas the second region contains more

hydrophobic residues in hemoglobin and can bind to

2,3-bisphosphoglyceric acid in the deoxy state of

hemoglobin.20,21 Because of these differences in

hydrophobicities, burying region 62–72 and exposing

region 75–85 of hemoglobin is energetically less

favorable in the framework of the original burial

mode model. Therefore, by pinning residues 75–85

to the surface we just restored the propensity of this

region to exposure. To summarize, from the family

of globins, we have learned that the tendency of

amino acid residues to be buried or exposed might

be determined not only by their hydrophobicity and

the available space in the core but also by whether

the residues are potential sites of interaction.

Binding and mutation as triggers of

conformational change

The realization that regions involved in interactions

have marginal propensities to be buried gave us the

idea to look at conformational fluctuations, which we

would expect the burial model to predict in regions

least able to “decide” whether to be buried or exposed.

Continuing to study the family of globins, we gener-

ated an ensemble of burial traces with energy DE51

25kBT above the ground state energy for the

sequence of sperm whale myoglobin (PDB ID 1BZP),12

and then from these burial traces we computed the

variance of squared radial distance var ½r2ðsÞ� as a

function of residue position along the chain. This

function indicates the ability of each part of the chain

to change its shape. Figure 4 shows the structural

variability var ½r2ðsÞ� and the 3D structure of the myo-

globin colored according to this function. Strikingly,

the most variable region of myoglobin corresponds the

location of histidine 93, which chelates the protein’s

heme cofactor.19 This result is consistent with our ini-

tial idea that the regions which can freely shift from

core to surface are located close to interaction sites.

We decided to look at other proteins and to

check if our method of fluctuation analysis can be

used to provide analogous insight into function in a

broader range of cases. We selected two proteins in

which the relation between function and conforma-

tional motion is understood and for which the model

succeeds in predicting ground state burial traces: H-

Ras protein (3K8Y, PCC 5 0.42) and chymotrypsino-

gen (1PYT, D chain, PCC 5 0.49). H-Ras is an intra-

cellular protein which is involved in cell division

regulation, while chymotrypsinogen is a secreted

protein which possesses serine protease activity. H-

Ras acts as a switch in a signal transduction from

membrane to the cell nucleus. In its active state H-

Ras binds to GTP and converts it to GDP by cleav-

ing the phosphate group. Figure 4(C) shows the 3D

structure of H-Ras bound to GTP and the structural

variability of H-Ras computed using burial mode

analysis method. As one can see from this figure,

the GTP binding sites of the H-ras protein (10–17,

57–61, 116–119) are located in highly fluctuating/

variable regions.22

Figure 4(C) shows the results of similar analysis

performed for chymotrypsinogen and chymotrypsin

(the active form of chymotrypsinogen). The conver-

sion of chymotrypsinogen into its active form occurs

in several steps: first, chymotrypsinogen is secreted

and the signal peptide (residues 1–16) is cut; then,

the activation peptide (residue 17–29) is removed by

trypsin. The active form of chymotrypsin (residues

30–268) has catalytic activity.23 As one can see from

Figure 4(D), both the activation peptide and the cat-

alytic sites of chymotrypsin have high structural

variability. These findings increase our confidence

that the model correctly explains structural rear-

rangements in proteins, where the burial trace pre-

diction matches well to the known structure.

Structural variability may, indeed, be an impor-

tant physical mechanism for biological function in

many proteins, however, there are also situations

where one would not expect to see a signature of

conformational change in this metric. It is possible

that a protein’s native fold might be well-structured

but that it could exhibit strong sensitivity to small

changes in its sequence. For example, in a recent

study, Alexander et al.24 demonstrated that it is pos-

sible to design a version of the streptococcal protein

G such that a single point mutation (L45Y) leads to

switching from 3a to 4b 1 a fold. Furthermore, they

obtained high-resolution NMR structures of two pro-

teins (2KDL, 2KDM) different by three mutations

(L20A, I30F, L45Y). These structures and the corre-

sponding burial traces are shown at the top panel of

Figure 5(A). While the L20A and I30F mutants do

not lead to a conformational rearrangement in the

protein, the L45Y mutation does, and it is clear that

the map of structural variability does not reflect the

corresponding pattern of mutational sensitivity.

However, we also analyzed the sensitivity of

both structures to changes in sequence hydrophobic-

ity pattern. Using the burial mode model, we con-

structed the response matrix

vs;s05
dr2ðsÞ
duðs0Þ ;

where dr2ðsÞ is the change in predicted optimal burial

trace at position s following a small change in hydro-

phobicity duðs0Þ at position s0 along the chain. The

rows of this matrix show how sensitive the optimal

structure of the protein is to mutations. The bottom

panel of Figure 5(B) depicts the response matrices

computed from the sequences of 2KDL and 2KDM

proteins. It should be noted that for both proteins,

small changes in hydrophobicity in the region 43–47

lead to large changes in predicted burial trace. This
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result is strikingly consistent with the experimental

fact that mutation L45Y triggers a complete change of

fold in the protein. Thus, the physical model of confor-

mational energetics provided by the burial mode pic-

ture enables a diverse set of approaches to analyzing

structural phenomena in globular protein domains.

Discussion
The problem of protein structure prediction from

amino acid sequence has a long history. The most

reliable approach to this problem so far—all-atom

simulation—is computationally costly because it

explicitly keeps track of the multitude of

Figure 4. Conformational changes in sperm whale myoglobin (1BZP), H-Ras (3K8Y), and chymotrypsinogen (1PYT, D). (A) On

the bottom panel, the solid black line corresponds to the burial trace of myoglobin computed from the crystal structure, while

red lines correspond the burial traces of low-energy excited states (DE54 kBT ). On the top panel, structural variability var ½r2ðsÞ� is
computed from these burial traces. The gray bars on both subplots correspond to heme binding sites (residues 65 and 94), (B) The

crystal structure of myoglobin is colored according to the structural variability var ½r2ðsÞ�. A heme molecule is shown in red, (C) Con-

formational changes in H-Ras (3K8Y). On the top, burial traces of low-energy excited states of H-Ras are depicted. On the bottom,

the structural variability is both plotted and colored on the crystal structure for H-Ras, as computed for burial traces of DE54 kBT .

GTP binding sites are shown as gray bars, while GTP is shown in red, and (D) Structural variability of chymotrypsinogen (1PYT, D).

Here, green lines correspond to the burial traces and structural variability computed for the uniprot sequence (before the signal

peptide of chymotrypsinogen is cut), while red lines were computed for chymotrypsinogen sequence take from the PDB file (before

the activation peptide is cleaved). Catalytic sites (H74, D121, and S216), signal and activation peptides are shown in gray. On all

subplots, the structural variability var ½rðsÞ� is shown in arbitrary unit.

Perunov and England PROTEIN SCIENCE VOL 23:387—399 395



interactions among all atoms inside a protein. In

this study, we set out to characterize a model of pro-

tein folding which sacrifices atomic details and

which considers only backbone stretching, steric

repulsion, and the hydrophobic effect to explain con-

formational preference in proteins. The advantages

of this approach to studying the sequence-structure

relationship are its high speed and the simplicity of

interpreting results. However, a stumbling block

preventing us from using the model to study large

collections of proteins was a lack of clear under-

standing of the model’s limitations.

The parameter space of the burial mode model

is defined by the hydrophobicity scale by which the

amino acid sequence is mapped into a quantified

string of relative burial tendencies. Thus, to improve

the predictive power of the model, we searched for a

better hydrophobicity scale. Having not found

another standard hydrophobicity scale that works

significantly better than KD scale, we did a brute

force search for a new hydrophobicity scale with a

reduced amino acid alphabet. Because this approach

was not more effective than using KD scale, we

devised a method to infer relative hydrophobicities

of amino acid residues from analysis of known pro-

tein structures. This method is based on the idea

that two amino acid residues that are the nearest

neighbors on the chain are essentially in the same

environment, and their tendency to burial is deter-

mined only by their relative hydrophobicity. It

should be noted that using statistics of amino acid

contacts and distances to infer amino acid interac-

tions has been widely used before.25,26 However, our

method is fundamentally different from Miyazawa,

Jernigan, and Sippl’s statistical potentials as it con-

siders only local interactions affecting relative burial

of adjacent residues along the chain and focuses on

the relative positions of amino acid residues with

respect to the center of mass of the protein rather

than pairwise distances.

Strikingly, the hydrophobicity scale computed

with our method was in good agreement with the

experimentally measured scales. This fact supports

the idea that a large collection of proteins can be

treated as a statistical ensemble of sequences, and

that our model of folding is based on sound physical

assumptions about the forces driving native struc-

ture. Testing the model with the new scale, we found

that performance on a large set of proteins was not

improved; apparently, the model has limitations

which may come from neglecting other intrachain

and/or interdomain interactions that may be impor-

tant to protein structure in any given case. Indeed,

it is not surprising that the hydrophobic effect is not

sufficient to explain the tertiary structures of globu-

lar proteins in all cases. Long-range hydrogen bond-

ing interactions (such as in beta sheets), disulfide

linkages, salt bridges, and dihedral angle con-

straints all are forces not included in the burial

mode model that might play a definitive role in

selecting a particular native structure in the case of

a given protein. In this light, it is easy to under-

stand why the alpha-rich globins proved such a fer-

tile testing ground for the model.

Figure 5. Conformational change triggered by mutation. (A) 3D structures of the 2KDM and 2KDL proteins show that mutation

L45Y leads to the transformation of a 3-a fold into a 4b 1 a fold. Structural variability, plotted in red and green, was computed

from the burial traces of the low-energy excited states (DE54 kBT ). The positions of other mutations are shown as the gray

bars on the plot; and (B) Response matrices dr2ðsÞ=duðs0Þ of the 2KDM and 2KDL proteins. The plots on the bottom were

obtained by taking the sum of the absolute values along the rows of the response matrices. In both proteins, the residues near

the termini and residues 43–47 are the most sensitive to changes in amino acid hydrophobicity.
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Nonetheless, it should also be noted that the

matrix of relative positions Mij that we used to com-

pute our new hydrophobicity scale contains more

information about amino acid residues than a simple

hydrophobicity scale, because it treats each pair of

letters as having a unique local interaction. Thus,

there are 190 parameters in this matrix that corre-

spond to relative burial tendencies of different pairs,

and an exciting future avenue of research will be to

develop a model similar to the burial trace model

that exploits all of the information in this statistical

potential to predict the conformational physics of

proteins. For example, it may eventually be possible

using this information to develop better criteria for

distinguishing between sequence trends that pro-

mote burial in the globular core and sequence trends

that facilitate surface interaction with a hydrophobic

ligand or protein–protein interface. While both such

trends might correspond to elevated hydrophobicity

on the KD scale, one type of sequence composition

could well be distinguishable from the other with a

more detailed model of the nontransitive relative

burial tendency in each amino acid pair.

Having found that the burial mode model could

not be substantially improved simply through para-

metric optimization, we set out to explore the origins

of the model’s limitations. In particular, we looked at

the family of globins, where the model performs

exceptionally well with myoglobin and does not suc-

ceed with hemoglobin. From the comparison of these

two proteins, we learned that the propensity of

amino acid residues to burial might depend not only

on their hydrophobicity but also on the interactions

with molecules external to the monomeric protein

chain, which are not included in the model. This

realization gave us the idea to study conformational

fluctuations in order to identify potential sites of

interactions. For various proteins with good burial

trace agreement (myoglobin, H-Ras protein, and chy-

motrypsinogen) we demonstrated that ligand-

binding and catalytic sites are located in the regions

of high structural variability.

This finding is consistent with the

“conformational selection” paradigm that has been

suggested previously in the study of binding

events27—regions of proteins that have to accommo-

date ligands, whether small molecules or other pro-

teins, benefit from being structurally variable because

the free energy of interaction is improved when the

protein can optimize its shape to accommodate the

moieties of the ligand. This process is accompanied by

large structural rearrangements if there is an energy

exchange between protein regions with “discrete

breathers” (localized excitations).28–31 The conforma-

tional selection paradigm implies that “discrete

breathers” should be located close to ligand-binding

sites. Although at first sight, the conformational selec-

tion paradigm and the approach that we used in this

study look different, the similarity between them

becomes clear if we make an analogy between

“discrete breathers” and the eigenmodes of the burial

mode model energy function12—in both descriptions,

ligand-binding suppresses one mode and stimulates

another, coupling large scale motions to the transduc-

tion of small forces. Furthermore, it should be noted

in passing that, unlike methods which use the normal

mode analysis to compute structural variability and

mechanical response,32–35 burial mode analysis relies

only on sequence information and is not limited to

small perturbations about a local energy minimum in

a particular conformational state. Thus, burial mode

analysis may yet prove useful as a general tool for

prediction of catalytic and ligand-binding sites from

primary sequence information.

To conclude, we presented a simplified model of

protein folding which allows one to compute informa-

tion about protein structure directly from its

sequence. In our attempt to optimize the input

parameters, we discovered that the KD hydrophobic-

ity scale provides nearly optimal performance and

the limitations of the model come in part from the

interactions with external molecules that are not con-

sidered in the model. To predict potential sites of

ligand interaction, we exploited the idea of conforma-

tional selection and demonstrated that the burial

mode model captures functionally relevant conforma-

tional changes in several cases of good burial trace

agreement. Finally, we showed that sometimes the

requirement for good burial trace agreement can be

relaxed and the model can also be used to predict

regions most sensitive to mutations. This information

can potentially be used in drug design to identify tar-

get sites and in SNP genotyping to distinguish neu-

tral and disease-causing mutations. The model can

also provide auxilliary information for MD simula-

tions that use burial traces to generate initial protein

configurations.36 In addition, because of the high

speed, the model can be used as a tool to study large

collections of homologous sequences, which became

available with high-throughput genomic sequencing

and to access structural information about different

mutants that are not yet crystallized.

Materials and Methods

Calculation of hydrophobicity scale from the

matrix of relative positions

To calculate hydrophobicity scale of n-letter amino

acid alphabet from the matrix of relative positions,

we first constructed two matrices Anðn21Þ=23n and

Bnðn21Þ=231 elements of which were computed as

follows:

Ami51; Amj521; (3)

Amk50; for k 6¼ i; j; (4)
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Bm152ln Mij=Mji5Duij; (5)

where i5½1;n21�; j5½i11;n�; and m5ði21Þ3ð2n2iÞ=
21j2i. Then, we used the method of least squares to

find approximate solution for overdetermined system

of linear equations A � u5B, where u is n-letter

hydrophobicity scale.

Generation of the burial traces of near-native
states

The burial traces in the model can be written in

terms of the eigenmodes wkðsÞ of energy function (1)

and coefficients ck: r2ðsÞ5
P

k ckw
2
kðsÞ. Thus, to com-

pute the burial trace of the lowest energy state, one

should minimize

E5
X

k

ckek; (6)

where ek are the eigenvalues of the model energy

function (1), subject to the steric constraints:

X

k

ck5aNR2; (7a)

0 �
X

k

ckw
2
kðsÞ � R2; for s 2 ½1;N�; (7b)

ck � 0; for all k: (7c)

These equations set an exactly solvable linear

programming problem with variables ck, objective

function (6), and linear constraints (7). The solution of

this problem provides the energy of the lowest energy

state Emin and optimal coefficients copt
k . To find the

burial traces of excited states with energy Emin 1DE,

we generated a set of coefficients ck which are the

solution of another linear programming problem with

constraints (7) and
P

k ckek5Emin 1DE, and objective

function
P

k ckrk; where rk are random numbers.

To compute the structural variability var ½r2ðsÞ�,
we first computed n 5 100 burial traces of near-

native states r2
i ðsÞ (i51; 2; :::;n), and then for every

position s we calculated the variance of r2ðsÞ:

var ½r2ðsÞ�5 1

n

X

i

ðr2
i ðsÞ2 mean ½r2ðsÞ�Þ2; where (8)

mean ½r2ðsÞ�5 1

n

X

i

r2
i ðsÞ: (9)
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